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WAVEGUIDES FILLED WITH MAGNETOPLASMAS OF VARIOUS TYPES

Wave propagation in a linearized, homogeneous magnetoplasma
of bounded and unbounded regions hagyséén investigated in detail.
Plasmas of various models are considered in order to evaluate the
effects of electron temperature and of the resonances on the waves.
In this thesis three models are studied: the usual incompressible
model, the compressible fluid model and a microscopic model. The second
model is based on the transport equations and the third on the Boltzmann
equation with an assumed Maxwellian velocity distribution at equilibrium. |
Waves in a circular waveguide filled with either incompressible
or compressible plasma are analyzed under the boundary condition that
the tangential electric field is zero and for the latter case the normal
electron velocity is zero on the guide wall. When the static magnetiz-
ing field is parallel to the guide axis, thefﬁodal waves can be expressed
in terms of known functions. The longitudinal propagation constants
for both models are numerically evalﬁated and compared. In the case
of the compressible plasma, the electroacoustic waves are coupled to
the optical waves through the magnetizing field and the boundary
conditions. As a consequence the propagation constants are found to
consist of two types. The first can be identified as those of the
incompressible model, but slightly perturbed. Modes of the

s econd - type arise from the compressibility of the plasma and the

assumed boundary conditions for the electron velocity. For the second



type, since the acoustic speed is much smaller than the light speed,
the permissible propagation constants are so densely located in the
Brillouin diagram that they resemble a continuous spectrum.

Modal fields due to a source in the waveguide filled with
compressible or incompressible plasmas are formulated. The relationship
between the power and the impedance of an antenna in the guide is
determined. A numerical example is given for the resistance of a small
antenna in the guide filled with incompressible plasma.

Finally, the case of .oblique static magnetizing field to the
guide axis is discussed. Unfortunately, the modal fields for this

case cannot be represented by known functions.
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I. INTRODUCTION

Ionized medium jn the presence of a dc magnetic field, namely,
magnetoplasma has been subject of intense interest in recent years. Most
investigations have been devoted to wave propagation in plasma of un-
bounded regions., Since the laboratory produced plasmas are confined to
small finite regions only, often comparable to the free space wavelength
of interest, it appears to be appropriate to investigate waves in a
waveguide filled with anisotropic plasma. But the complication in such
a problem arises from the requirement of satisfaction of certain boundary
conditions.

wWhen a wave propagates in an anisotropic plasma medium, very
complex physical processes take place. In order to gain some theoretical
understanding of the phenomena, as usuagl, various idealizations are
imposed on the system and thus result in different plasma models.' These
idealizations are used to simplify some aspects of the medium, such as
the governing equations, convection cyrrents and interactions of different
species of ions, the Brownian motion @f charged particles, the homogeneity
of the medium, the boundary conditions on the conducting walls, etc.

The simplest mathematical description of the waves in plasma
consists of the Maxwell equations, the continuity equation of the mass
flux, and the equation of motion for a single particle. Even for such
a simple model, the solution is exceedingly difficult to obtain due to
the nonlinearity of the equation. It is usually assumed that the medium

is at equilibrium and the RF signal is so weak that. .the perturbations




of the medium are small enough to validate a linearized theory. Moreover
often only the ion convection current which is due to electrons is con-
sidered, because of the high mobility of the electrons as compared with
other ions. Collisions among charged partjcles are also very complicated
phenomena; however, since collisions among particles of the same species
result in no net change of momentum, sometimes their effect.is neglected
altogether, particularly when the wave frequency is high. Other times a
simple correction may be obtained by replacing the electron mass m, by
a fictitious mass me(l-jv/uﬂ where v is the so-called collision frequency.
For a low temperature plasma the thermal motion of the charged
particles may be ignored. This results in the well known cold plasma
model(l)which has been successfully used to explain many ionospherical
phenomena. However, near resonance the wave velocity becomes close to
zero, so that neglecting the thermal motion ceases to be a good approxima-
tion. To take into accounf the thermal motion, the plasma is generally
treated as a compressible fluid. A new quantity, namely the pressure
must be used to describe the magnetoplasma somewhat more precisely. For
this new unknown it is necessary to add an equation, usually the equation
of state, to those already stated. This constitutes the so-called
transport theory of a warm or compressible plasma model. From a more
precise microscopic description of the plasma, namely the Boltzmann
equation, it is known that even for such a model, the low temperature
approximation has been impliéitly used. Nevertheless, because of the
introduction of compressibility, new phenomena, such as the electroacoustic

waves, may be explained.




In the warm plasma model, phenomena which are associated with
the velocity distribution of charged particles are not included. For
a more precise description the Boltzmann equation may be employed. The
first two moments of this equation over the velocity space reduce to
the equations of conservation of particles and momentum or the continuity
equation and the equation of motion. The third moment equation relates
the pressure tensor and the heat flow triadic,(z)By neglecting the
latter and assuming the pressure to be a scalar which is related to
the particle density through the equation of state, one obtains.exactly
the transport theory of a-warm plasma model. The Boltzmann equation is
an equation for the one particle distribution function, which is difficult
to solve, because of, among other difficulties, the lack of knowledge
of the collision integral term. By assuming that the ¢ollision integral
is simply proportional to perturbed velocity distribution function (although
this assumption is not compatible with conservation of the number of
particles). assuming somé linearization to the equation, Allis,

(3)

Buchsbaum and Bers'“’were able to obtain an approximate solution to the
dispersion relation. However, their results are limited to the case of

very ~ high magnetizing fieldad low temperature and also not valid for

~arbitrarily large wave number.

In this thesis the aforementioned three models will be con-
sidered and later applied to a plasma filled circular waveguide.
However, because of the complexity of the third model, most of . the

numerical fesults~are evaluated for the first two models only. The




necessity of considering the warm plasma model arises from the fact
that at resonance the electron thermal velocity can no longer be ignored
as stated earlier.

Waves guided in parallel planes, rectangular and circular
pipes filled with magnetoplasmas or ferrites have been investigated by

Unz(4) studied the parallel plates filled with a ferrite

many authors.
magnetized in an arbitrary direction and obtained a characteristic
equation for the propagation constant which must be solved with a com-

(s) (6)

puter. Kales, Cherit and Sakiotis and later Brazilai and Gerosa
investigated the anisotropic rectangular waveguide. 1In this case only
when the dc magnetizing-field’\BlO is perpendicular to the guide walls,
and all fields are independent of the coordinate along Eo , the

E- and H-waves become uncoupled, and thus the problem can be easily
solved. The dual to this problem, namely when the plasma is replaced
by ferrite was considered by Kales. He also studied the case whenE0

(7)

was parallel to the guide axis and found that there exists no un-
coupled TE or TM waves except at cut-off. For the latter the cut-off
frequency can be easily determined. Later Epstein (8)considered the
circular guide and obtained modal solutions in terms of known functions,
if ED is parallel to the guide axis; however, he gave no numerical
results,

For anisotropic circular waveguides with axial dc magnetiza-

tion, a small number of numerical solutions for the cut-off frequencies

and the propagdtion constants have been obtained by various authors.




Two of these works give significant results. Suhl and Walker(g) follow
a very involved approach. Their report which is mostly concerned with
ferrite filled guides gives several diagrams for cut-off frequencies

as well as for propagation constants. They use two parameters one of
which would correspond to the inverse of Y for an anisotropic plasma.
Naming the modes according to their limiting forms when Eo become

zero, they obtain results for T Ell’ TE12 and TMII modes. They work on
magnetoplasma filled guides also, and give one curve for the cut-offs
of the TE,, mode. A systematic work considering cold plasma is given

11
(10)

by Bevc and Everhort. They name the modes according to their cut-off

forms. Their report includes several diagrams of cut-off frequencies
for modes with the first three indices of angular dependence and the
first three solutions for each angular index. Also Brillouin diagrams

for TM™ 1° TMOZ’ ™

0 , TE01 and TE

1 modes are given.

In 'his paper on axially magnetized plasma filled waveguides,

11

Willet(ll)considers the effect of a pressure gradient. He assumes that
on the conducting boundary the tangential electric field, the normal RF
magnetic field and the normal convection current components are zero.
Actually his assumption for the magnetic field is the direct result of
the assumed condition on the electric field. 1In his momentum equation
the electric field does not play any role. 1In his so-called generalized
Ohm's law, on the other hand, the net effect of Eo comes out to be zero.

He adds a resistivity term which should correspond to collisions. After



dropping some terms he obtains his approximate equations and finds TE
and. TM modes for guide of arbitrary cross section. Then he gives
examples, namely for rectangular and circular cross sections.

Several studies have been made regarding the power and
orthogonality properties of modal waves in anisotropic media.

(3)

analyses the power carried in anisotropic guides for two

(12)

Buchsbaum
models, namely the cold and the warm plasmas. Collin in his book
indicates that if an anisotropic guide.shows reflecfion symhetry, simple
orthogonality relations exist among modes.

The purpose of this work is first to reformulate the problem
of anisotropic waveguide in a unified but simpler and more straight-
forward approach than those taken by other authors; second to study the
waves in a warm anisotropic plasma; third to determine the wave propaga-
tion characteristics in a circular waveguide filled with plasma and
fourth to determine the effect of plasma temperature on propagation
characteristics. We also consider an anisotropic waveguide with an
oblique magnetization in order to determine whether modal solutions in
terms of known functions can be obtained.

In ‘this thesis a general expression for dispersion relation of
.an anisotropic plasma is derived and then applied to three different
plasma models, namely the incompressible, the compressible fluid model
-and the one obtained by using Boltzmann's theory. In all these cases
we have made use of the assumptions discussed at the very beginning.

‘It is found that the compressible fluid model brings forth some modifica-




tions to the cold plasma index surfaces. Also the results obtained from
the Boltzmann's theory showed that, the compressible fluid plasma refrac-
tive indices need some modifications for frequencies very close to the
resonances of the electrons.

For the waveguide the boundary condition is assumed to be that
the tangential electric field on the conducting surface vanishes for all
models. In the case of warm plasma model, it is further assumed that
the normal component of the convection current vanishes on the conduct-
ing surface.

The power, impedance and orthogonality relations of waves in
the anistropic guide are studied in rather general terms for both in-
compressible and compressible models.

For circular waveguides with axial magnetization, it is found
that simple orthogonality relations can be derived for the warm plasma
as well as for the cold plasma.

As for the propagation constants of the guide it is interest-
ing to find that they can be divided mainly into two types. First,
there are some solutions of the characteristic equation of the warm
plasma model, which differ little from those for the cold plasma model;
in fact, they reduce to the latter as the plasma temperature approaches
zero. To the second categorylbelong solutions which are stronly dependent
on the guide parameter and may vary widely for a small change in frequency.

Fields associated with the modes of the aforementioned three

types of propagation indices have been studied. It is found that fields



of the first type have a form somewhat modified from that of the
corresponding fields in the cold plasma model. The only significant
difference appears in the radial electric and azimuthal magnetic field
components. The fields of the second type have their main contribution
from the plasma waves and behave like a TEM mode, although it is a
combination of three fields each of which has different transverse
propagation constants. These fields correspond to the ordinary,
extraordinary and plasma waves. For all the three cases, the convection
current is axial, and the RF plasma density as well as the convection
current are mainly supplied by the plasma wave.

Since in axially magnetized waveguides only the fields with
real and purely imaginary axial propagation constant jy contribute to
the real and reactive power respectively, the subsequent investigation
on the roots of the characteristic equations is confined solely to these
two kinds. To facilitate the computation it is further restricted to
the solutions of the case where the characteristic equation is real.

It is found that along the real axis of yz, only certain regions satisfy
this condition. For a cold plasma, with given values of X and Y, the
number of these regions can be at most two. For warm plasmas, with
fixed temperature, X and Y, the maximum number of these regions is
three. The lower and upper bounds of these regions do not depend upon
the normalized radius 2nr°/k nor the azimuthal behavior of the fields
but they depend upon X, Y and temperature only. For cold plasma, with

0 < X3 and0 <Y g 2, these bounds are computed. For both cold and

warm models with fixed plasma density and Eo’ the axial refractive index




is numerically determined as a function of the normalized radius, or

the frequency for a given radius. The results obtained using the exact
form of the characteristic equation of the warm plasma are found to be

in perfect accordance with those which the study of an approximated
characteristic equation predicts. General expressions, for the input
‘impedance of an antenna placed in the guide filled with either a cold

or a warm plasma, are derived in terms of assumed distribution of the
current and the pressure. For an example the input resistance of a probe
is numerically determined using the cold model.

For Eo oblique to the guide axis the field equations are studied
in the case of cold plasma. It is found that the solutions can be
expressed in terms of infinite series and the determination of the co-
efficients of these series is very complicated, even for the case of
uniaxial plasma.

The first chapter of this thesis deals with the general
dispersion relation which is applicable to the three aforementioned
plasma models. A short comparative study of these three cases is also
given. In Chapter 1I, field expressions of both incompressible and
compressible fluid models are given in general terms. The boundary
conditions of the waveguide are imposed and the characteristic equations
for the case of axial magnetization are obtained. These equations, as
well as the fields corresponding to their solutions are compared in

order to determine the effect of plasma temperature. Chapter 1II is
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concerned with the orthogonality and power relations of a warm plasma,
including the cold plasma as a special case. In Chapter V, numerical
results are given for cold and warm plasmas. The derivation of the
impedance of an antenna in the waveguide is studied in Chapter VIfor the
warm plasma, again including the cold plasma model as a $pecial case.
Using the cold model, the radiation resistance of a probe is computed.
In Chapter VII, awaveguide with a Eo oblique to its axis is studied.

The study of the dispersion surfaces, the field expressions,
characteristic equation, orthogonality and impedance relations for the
warm plasma model and their comparison with those for the cold plasma
can be summarized as follows:

Part of the solutions for the warm plasma model are slight
modifications of those for the cold plasma model; whereas the remaining
ones are essentially attributed to the plasma pressure waves. At places
where two of the three characteristic waves have their wave number or
their wave numberAand field strength of the same order of magnitude,
hybrid solutions take place. Infinities or zeros of the cold plasma
results, however, are considerably modified by the temperature effect.
For example, the infinities of cold plasma index surfaces become finite
and, instead, at that angle there are a real and an imaginary propagation
index with élmost equal magnitude; as another example, the so-called
TE cutoff wave of the cold plasma mode is replaced with a TM warm plasma

mode.
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Although the compressible fluid model is an improved description
over the cold plasma model, other phenomena which are associated with
the velocity distribution of electrons are still ignored. In the first
Chapter, by using the Boltzmann equation apbroach it is found that the
propagation transverse to EP may yield arbitrarily large refractive index
near gyroresonance or its multiples. A more precise and complete study
of the Boltzmann equation is rather complicated and it seems that only

a numerical approach would be possible.



II.

2.1 Field Equations for a Genergl Case

DISPERSION RELATIONS FOR VARIOUS PLASMA MODELS

Let us assume that we have a medium filled with an anisotropic

dielectric with a relative permeability dyadicgi or matrix (K)

Let

K
xy
X2

K
zy

v
us further assume that we have

=-K;
yX
zx’

=--K
YZ

———

|

K K
XX Xy
K K
yXx YY
K K
ZX zy

13

XZ

YZ

2z

—

(2-1)

(2-2)
(2-3)

(2-4)

If the medium is lossless, the matrix (K) becomes Hermitian

(Appendix 1).

The Maxwell Equations for this medium are:¥¥

%In our study we will consider only the media with the property given by

Equations (2-2) through (2-4).

*%In this study the following notations will be used to denote partial

derivatives:

4
XX

d

d
v
d

v

- 3/aw

- 3/dt
- d/3x
- d/dy

- 3%/3xdy
- 32/ 2
3%/3,

- 3/3v

°

12
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Curl{( dt;.?‘+£o= dt eo(s cé) + Q‘ (2-5)
Curlé, -4.8 - 7%~ -d uB- X (2-6)

Solving foré? in absence of sources (%= A= 0) we get

e 2, £ L E '
(grad div - v ): = dtt My € lk(’ é (2-7)

Let us apply Fourier transforms to all the quantities with
respect to t and z such that the transform will take the time variable t
to the angular frequency w and the spatial variable z to - Jy jy being
the propagation constant along the z axis. Denote the Fourier transforms
oféi and;f’as's andlﬂ respectively. Then in the transformed domain

Equation (7) becomes

g E=0 (2-8)
where
[ 2 -
-d - d d
YY Y Xy Y X
2 . .
(9= d, d o Y vd, (k) (2-9)
ydx ydy -dxx -dyy
where
k =k 2 K (2-10)
/e 0 =
where
2 2
k0 =W oMo (2-11)

From the set of Equations (8), (9), and (10) one obtains

AE, =0 i =x,yor z. (2-12)
where 4 is the operator which can be represented as the determinant of the

coefficient matrix of Eqs. (8), (9), and (10).*

*Since in Eqs. (8), (9), and (10) the operations involve differentia-
tions, multiplications and additions only, and since these operators are
commutative, excluding the division, the rules of algebra can be applied to
solve the system of linear equations. Then with a little manipulation,
one arrives at Eq. (13).
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Let the terms of matrix (g) be defined as follows:

(g) = b b b . (2-13)

B B (2-14)

Using the above definitions one can write the following equa-

tions:#
A Ey = A, E_ (2-15.1)
Ay E,=AjE, (2-15.2)
A, E, = A, Ey, (2-15.3)
B E, =B, Ep (2-16.1)
B, E, =By E, (2-16.2)
B, E, = By, E s (2-16.3)

*The indicated results have been derived on the same line of reasoning
as explained in the footnote of Eq. (13).

r
.
n
w
|
o 0B N D G M G BN N D a5 G 0 S en S8 e a8 e
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Cl Ey = CZ Ex, (2-17.1)
_ -17.2)
C, E, =C3 E, (2-17.2)
C, E, = C, E, . (2-17.3)
Therefore, the general solution of Eq., (2-7) can be given as:
om = 0 (2-18.1)
A
E = e - G o (2-18.2)

The above defined scalar function g can be called the potential function
of the field in the magnetoplasma.

where e, can be chosen as any of the unit base vectors.

Because of their comparatively shorter expressions in this work
we will be dealing with Cl, C2 and 03 rather than with the other elements
of (G). Namely, in applying Eq. (2-18.2) we will choose

A
e

A
z.

The expressions for Ci's are given below:

2
Cp = v ik Gyt Ry Gt vk d vk d

.3 2
+ i - -+ + -
5% d (Y k Y) k k y kY (2 1891)
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C, =vyd Vv Z k d -k _d_ +wyk d +«k d
2 y t Xz XY yz yy Xy X XX Yy
+ y3d ko k- Z k) K (2-18.2)
y XZ Xy Yo xx" yz
2_2 2 2
= + + + +
c3 A kyy dyy kxx dxx ly kxx)(Y kyy)
2 .
+ K (2-18.3)
xy
where
v.=4d _+d (2-19)
t XX yY
The expression for A can be given as
2 2 2
4= [—kaxz dx B kxxkyy i kxy Y kzz] Ve
2 2 2 2
- - + 90+
+ kxz dxx kyz dyy (kxxdxx + kyydyy)(Y Ve kzz)
2
+ 2¢[- + +
2y(- (y kyy)kxz Ky kyz]dx
4 2., 2 2 - _
-y k, ty Tk, - kyz (k, * kyy)kzzj D (2-20)
where
- 2 2 _ 2
b= kay kyz kxz + kyy kxz N kxx kyz kxx yy 2z xy zz'

A includes differentiations of 6th order. Four
forms of Eqs. (2-5) and (2-6) would yield 6 linear equati
of Hx’ Hy’ Hz’ Ex, Ey’ Ez and the determinant of the coef

these equations would involve derivatives of 6th order.

determinant must be equal to A. Hence, Eq. (2-12) can be

AF =0, (F=E,E,E,H, H or H).
X Yy z X y z

ier transformed
ons in terms
ficients of
Therefore, this

generalized as

(2-21)
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2.2 Field Equations for Cold Plasma
For a cold plasma with a uniform dc magnetic field EP’ the
convection current carried by the electrons can be eliminated from the
Maxwell equations by first solving this current in terms of the electric
field, namely the generalized Ohm's law:
Jme X E
and then defining the dyadic K of relative permeability as
s
K=1+X
~ =] 2
where 1 is the idemfactor.
In case one takes the z axis parallel to Eb and considers
only the contribution of electrons to the convection current, one finds
that the matrix (K) reduces to
K K 0
XX Xy
(K) = -ny K x 0 - (2-22.1)
0 0 K
zz
L —
where
. . .92 2
Kxx =1 - [x(1-j2) J/[(1-j2)°-¥ ] (2=22.2)
Koy = ] xy/[ (1-2) 277 (2-22.3)
K =K (2-22.4)
yy XX
.z = 1 x/(1-jz) (2-22.5)
where
2 2, 2,2 _
X = Ne /(meom ) = aN/w (2-22.6)



- N o - -
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Y = eBo/mw = wH/w (2-22.7)
Z = v (2-22.8)
N = electron density
B = |8
o ~0
v = the average collision. frequency of electrons
m = mass of electron
~e = charge of electron
w = angular plasma resonance frequency
wy = angular gyroresonance frequency.
In this case the expression for A becomes
4 2 2 2 2
A =- kxx{vt Hy ok, Tkt (kxy /kxx) + oy (kzz/kxx)]vt
+ e Ik ) + 2Pk + (07K )] (2-23)
Y 22" "xx Y ®zz 0 X
where kxx’ kxy’ kzz and D depend on the plasma parameters only.
Using the following definitions:
2hk +k + (k)P /) =2P (2-24.1)
Y zz XX Xy XX Y Y22 Txx ’
ko k) +2yPk .+ (D/k.) = Q (2-24.2)
Y V22" xx Y %22 xx )
thz = P+ (PZ—Q)I/Z (2-24.3)

This is the dispersion relation for the cold plasma giving the
transverse component of the refractive index in terms of the longitudinal
component.

Eq. (2-18) assumes the following form*

2 2
k(024 0D (e,

2
wx Ve + vy Ja = O (2-25)

*The dual of this result for a gyromagnetic medium coincides with the one
given by Epstein, 8
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Eq. (2-25) implies that either
2
(Vi + v])n = 0. (2-26)
or
2 2y
(vy + vy)m = 0. (2-27)
If we let the solution of Eq. (2-26) be
m o= 1‘1(x,y)eYZ (2-28)
and the solution of Eq. (2-27) be
= Yz -
TT2 fZ(X:Y)e (2 29)
then because of the linearity of Maxwell equations
m= [GIFI(X:Y) + szz(x’Y)] eYZ (2-30)
where 8y and 52 are constants.
For cold plasma the elements of the third row of (§) become:
C, =y d v2-k d + vk d +od (2-31.1)
1Y Sx t Yixy Ty Y Yy X Y “x '
C—dv2+kd+kd+3d (2-31.2)
2 Y t Y Xy X Y xx y Y y )
7 2 2 2 2 2 _
Ci= (Y +k ) v+ (" +k )7+ Key (2-31.3)
Since according to Egs. (2—26) and (2-27) together Eq. (2-18)
2 2 .= -
Vt Eij = 'Vj Ei_j’ J 132 (2 32)
hence, C3Eij has the following somewhat simpler form:
C,E..=q E..; (j=1,2) (2-33)

3 7ij ij

where q is a constant.
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2.3 Field Equations for Warm Plasma Based Upon the Transport'Theofy

The‘é which will be used in this section is given in terms of
the propagation vector(ﬁ. Therefore, the equations to be considered
have to be worked out in a Fourier transformed domain, not only for the
variables t and z but also for the variable x. In this case without
the loss of the generality the x axis is chosen to be parallel to the
plane formed by the z axis (which is parallel to Eo) and the propagation
vector k. Therefore, the variable y does not come into the picture.

Due to the temperature effect the electrons have a velocity distribu-
tion function f which determines the density of the electrons N as a
function of their velocity v according to the following equation

dN = f(v) dv_ dv  dv
X 'y oz

~

Therefore, the convection current I will now be found via the

equation

1= -ejjjv f dv. dv dv

The equation of electron motion used in obtaining the K of the
~

cold plasma has now to be replaced by the Boltzmann equation

df +v - uf - (e/m)(E+ v xB) - (df/dy) = (af/3t) (2-34)
collisions

From the solution of this equation one can determine the con-

ductivity dyadic X for the Ohm's law:
~




21
I =¢ X . E. (2-35.1)
where
K =1+ X. (2-35.2)
There are two methods for the determination of X. In the

follawing we shall consider the first while the second method will be
postponed until the next section. In essence the first is to replace
the microscopic description of the plasma, which is expressed with the
velocity distribution function and the Boltzmann equation, by a macro-
scopic one. This is usually achieved by taking various moments of the
Boltzmann equation over the velocity space. Unfortunately, each time a
higher order moment is taken a new macroscopic quantity is introduced
and the complexity also increases very rapidly. In practice this method
is seldom carried beyond the second moment, which leads to the equation
of the conservation of momentum with a newly introduced hydrodynamical
quantity, the pressure tensor. For a simple approximate theory, the
pressure is assumed to be scalar and related to the density through the
equation of state. This constitutes the so-called Boltzmann transport
theory.

In following this procedure, one first multiplies the equation
by 1 and’! respectively and integratesyover the velocity space, then
obtains the following transport equations

e dtN -v-1=0 (2-36)

~

-(m/e)d, 1 + ¢ .

¢ +NeE - I xB_=0 (2-37)

P
s (o]
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where P is defined as
RS

P m m v yfdv, dv, dv_.

For simplicity usually‘s is assumed to be a scalar

P =P 1

=1 _
where

p =zt _ (2-38)
and

1= (a+2)/a. (2-39)

(13)

Here o is the number of degrees of freedom of the motion of the electrons.
From the set of the five equations, namely éqg (2-36), (2-37),

and (2-38) together with the Maxwell equations two of which are scélar

and three of which are vectorial one can eliminate the quantities N,

P and E,and obtain Maxwell equations with. the modified E’Which is

~

defined by Eqs. (2-34) and (2-35).. The expression for the matrix (K) is

b

2 , 2 .
I-an JY(I-Wnp) wnpnt
_ 2 2 .
(K) = 1-F(n). -JY(I-wnp) 1-Wn -JYun n (2-40.1)
. 2,2
h_Wnpnt JYWnpnt I-Wnt Y
where 1 is the identity matrix,
F(n) = X /[l-YZ-W(nz-YZnPZ)] (2-40.2)
W= 4 kT ep/m= (a/c)? (2-40.3.1)
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a = acoustic speed in the medium
k = Boltzmann's constnat = (1.3804)10—16erg/°K
or
-10

W = (1.686)10 "“gT (2-40.3.2)

= i -40.4
n, J\/ko (2-40.4)
n, = kt/ko (2-40.5)
2 _ 2 2
n~ = np + ny (2-40.6)
kt’ in the present case is the propagation constant in the x

direction. Thus we assume that all field quantities vary as
-j +
exp | J(ktx kpz)]. |
Now inserting Eq. (2-40) into Eqs. (2-20) and (2-21) and then

using Eq. (2-12), one gets the dispersion relation of an unbounded warm

plasma:>*

W(1-Y2Cosze)n§+[(-1+Y2+X-XY200526)+2w(-1+Y2C0526+X)}n4

+ [(2-2Y2+XY2+XY2C0526-4X + 2x2) + w(l-Y20052672X+ x2)]n2

+ (-1+Y2-+3x—xv2 -3x2 +x3) = 0. (2-41.1)
where

Cos @ = np/n, (2-41.2)

9 being the angle between the propagation vector and Eo'
. 2
Replacing Cos® in Eq. (2-41) by (-Cos8) gives the same n°.
This shows that the refractive index surfaces are symmetric with respect

to the plane z = 0.

*Another form of this equation with (1/n) is given by Seshadri (14).




In order to put Eq, (2-41) into a more convenient form for the

analysis of a waveguide one can use Eqs. (2-40.6) and (2-42)  and get

6 + {[-14x+Y 2] 4 wl-242x+(3-y?)n J} :

[ (2-axk2x2+xv2-2v2) + (-242X-XY +2v§h21
Y

(2

[(1-2X+X )+( 4+4X+2Y )n + (3-2Y ) :]

2

+[L(=143x-3x24x3-xv2+v2) + (2-dx+2xB+2xy -2Y2)n§

+(=1+X=XY¥ +v )ﬁﬁ]

+Wl(1- 2x+x Yz)ni +(-2+2x+2v2)n§ + (1-Y2)n§]./} =0 (2-42)

which can also be written as

w(l=y' )n [(-14X-XY +Y2)]
4
n
P
[(-2+2x+2v2) + (3-2Y2)n§]

2 2

+{[(2- ax+2x2+2XY2 -2y ) + (=2+2X-XY +2Y )n )

o N

+wl(1-2x+X «Yz) + (-4+4X+2Y2)n3 + (3-Yzﬂn:

+{[(=143%~ 32X -xv 2+ )+(2-4x+2x2+xvz-zvz)nf +(1+X+Y2)n:]
f]

/

(2-43)

+W [ (1-2X+X ) + (1- 2x+x2 )n + (- 2+2X)n

24
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Equations (2-41), (2-42) and (2-43) are but three different
expressions of the same dispersion relation. Eq. (2-41) is given in the
polar coordinates (n, 6) whereas (2-42) and (2-43) are in the rectangular

coordinates (nt,np). All these three equations are of the form

3 2

Gy t° + G, t° + Gt +G =0 (2-44)

3 1

where t can be nz, ni or ns and Gi's are polynomials of the parameters
Cosze, n§ or ni respectively,

The roots of Eq. (2-44) can be expressed explicitly with well
known formulae.

Since in practice W <<1 which implies that

Gy << 1 (2-45)

some approximations for the roots of Eq. (2-44) can be made. Because
all G's contain a term of at most the first degree in W one writes
Gi(i =0, 1, 2, 3) as

Gi = Gio + WGiw with G30 = 0

Considering inequality (2-45), in the regions of © where
|Wn2 [<< 1 (2-46.1)
1,2 )

and

I(nf - ni)/n?l# arbitrarily small, (2-46.2)

The roots of dispersion relations which is summarized with Eq.

(2-44) reduce to simpler expressions as given below:
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_ 2. 1/2 2
t) = (-6, + (615 4650G0) ¥/ (265q) + 0(G3)
. =[G - (6% - 26, 6.2 (26, ) + o(cd)y T 610482080 0
2 10 10 20700 20 3
ty = -(Gyo/G;) +0(G,y) (2-46.3)

+ J(46,08,57620) 2V (26,0) + O(Gg)\

t) = [-6)4 20%0

. 2 \1/2 2 for G,.-4G,..G..<0
t, = (-G = J(46,0600-C10) "~V (26,0) + 0(63) > 10"7%20%00
ty = -(G,o/G,) + 0(G,) } (2-46.4)

If one neglects the terms O(Gg), the expressions found for t1
and tZ become the same as those for a cold plasma. However, this happens
only in regions of © where inequalities (2-46.1) and (2-46.2) hold.

Thus, for © not in these regions t1 and t2 are approximately

equal to the solution of the equation

2
Gzot + Glot + Goo =0 (2-47.1)

which is found to be the dispersion relation of cold plasma, whereas t3

is the solution of*

G3t + GZO =0 (2-47.2)

For the cold plasma limit where W = 0, G3 becomes zero and t3

approaches infinity.

(14).

*These results agree with the solutions obtained by Seshadri

clh GR O 88 9 S T o8 = m s

|\|I
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Using Eqs. (2-41) and (2-47) and assuming that G_. is not small,

20
one finds for the third index surface

(ng) = (W) [(1-Y?)/ (1-Y?cos20) - x1].
This surface is asymptolic to the one
[Cos 6} =.1/Y for ¥ > 1. (2-48.1)
For some value of 6, say el which satisfies
Cos’e, = (~1+v2ex)/ (xv?)  (2-48.2)

GZO becomes zero. Comparison of Eqs. (2-48.1) and (2-48.2) gives that

for Y >1

61 < 90.

The cold plasma refractive index surfaces go to infinity for

9 =9, if

1
4
1) x>1; Y°">1 (3-49.1)
or if
2) X<hLi ¥Y¥<L; Y+ X>1. (2-49.2)
For the compressible fluid model, however, very large values of n for

6 = 91 can be obtained and are approximately given by

nt - X(1-X) (- 14+2x+v2)/ [w(1-¥?) 1; In|>>1. (2-50)

This expression is positive for
I. Y9 >1; Xx>1 (2-51.1)

1. v2 > 1; v2-x > 1; X < 0; (2-51.2)
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2 2
IIT -1 <Y <1, 0<X<1l; Y =2X>1; (2-51.3)
v v <-1; X<0; (2-51.4)
.2 2
v oY <l x>1; Y m2x <l (2-51.5)

These regions are shown in Fig. (I-1).

In the (X, Y2) plane, the union of the regions given by in-
equalities (2-51) include the regions given by inequalities (2-49)
except for some boundary lines. Exluding some small portions.which we
are going to discuss, in the latter regions n4 of Eq. (2-50) is a large
positive number,

The right hand side of Eq. (2-50) becomes zero on the line X =1

2

and indeterminate at X =0, Y = 1. Therefore, in the regions described

below, the rdots of Eq. {(2-50) cannot be very large:

1. The area between the lines

X=+¢+ 1 (2-52.1)
where
|e/ [W(1-v?) ]L4>> 1; ¢ >0;
2. The area which is inside the lower branch of the hyperbola
X(-1#2x+v%) - 5 w(1-¥%) = 0
[which passes theouth the point X = 0; Y2 =1
where

6§ > 1
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or less restrictively the area left to the line
X = (1/¢)

where

)4 << 1.

(wg

Eq. (2-50) indicates that in the régions of Eqs. (2-49)at angles where

the cold plasma model gives infinitely large indices, the compressible
fluid model gives two refractive indices of equal magnitude, one of

which is real and the other one is purely imaginary.

FOrYZZl; l1<X<l1-¢g

2

and Y" <1; 1 =-¢ <X <1, the angle 6, is very small. This

1
angular region will be considered in Section 4 by using the Boltzmann
theory and it will be shown that for small values of 6, n cannot be
arbitrarily large and real.

At 8 = 91, the third root of the dispersion relation approxi-

mates to
t = -GOO/G10

The right hand side of this equation is equal to the solution
for the smallest index surface for zero temperature.
For Y2 = 1-X, 8, becomes 1/2 and the dispersion surfaces will

approximate to that shown in Fig. (2-2).

o up % e s @&
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Dispersion surfaces for warm plasma with Y2

= l-X
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For YZ = ], the largets refractive index become approximately

equal to

n3=j‘/)<_lﬁ+1—z*—\)

Sinzet

The second refractive index is approximately equal to the larger
refractive index of the cold plasma results except for g << 1, For g << 1,

n2 becomes

On the other hand, n only slightly deviates from the cold
plasma results for all values of §g.
Figure (1-3) shows the refractive index surfaces for the

compressible fluid model at Y2 = 1 and three regions of X, namely

X < 1; 1 «X< 2and 2 < X.
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Figure (2-3) Dispersion surfaces for warm plasma with ¥ = 1

?) X<l
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For Y2 = (1-X)2, one of the propagation indices become zero,
as it is for the cold plasma case.

Applying the above informations about the three roots of the dis-
persion equation a qualitative plot of refractive index surfaces for the
compressible fluid plasma can be made as shown in Fig. (1-4). In this
figure emphasis is given to the plot of the two largest index surfaces.
The smallest one, on the other hand approximates to the inner surface of
the cold plasma case for every value of X and YZ. Since the cold plasma
results are well known, some of the forms which this surface has are not

included in Fig. (2-4).

2.4 A Modification of the Warm Plasma Model

Since in hot plasma there may exist some electrons, the
thermal velocities of which are very close to the wave velocity, a
very strong interaction with the wave may be expected. This kind of
effect cannot be found in an analysis based on the fluid model since
in that model only averages over all velocities are considered. There-
fore, for a more precise study, particularly for the case of resonance,
the Boltzmann theory should be followed. Moreover, the validity of the
fluid model is restricted to moderately high temperature; because in the
truncation of the transport equations, which are taken as the basic equa-
tions for the study of the fluid model, it is implied that the thermal

velocity /4kT/m is much smaller than the velocity of light in vacuum.

et

- ED W U WD WD G WS G M G DB @ e -




1 << 2 »-:a\. << ?

*auerd zA-xX jo suojbau
JU949441p uj ewseld wiem jOo sadejuns xapu| 3sab.ey omy o:u 3O 10jARYaq 3A1183 ) Tenb 2y) (p-Z) 34nb)y

3

P+|%19-|
X 2
/
Al 2
/ N\ 7
/ \ 4
/ \ 2
g “
\ ~ I g
\ / w
\ / N7
N 7/ 1
~ - “
/
' V]
|

ANAANNANNRARANRANNNRANNNANNNNY

Kiouibow! S xdpuUl ———— |D3J S1 X3pul

W U G WD G P WS D D WS D AN W S G A W W e



38

In this section, the dielectric dyadic K as studied in Section
] .

3 will be reconsidered by using the Boltzmann's equation (2-34). Let us
consider only the first order perturbation in all the quantities due
to the applied a.c. field; then following the appraach of Allis,

(3)

Buchsbaum and Bers , in the Fourier transformed domain we have for

the matrix (K)

K = 1-j g, (2-53)
-1
o, = U g U (2-54.1)
=
1 -j 0 N
u = (1//2) 1 j 0 (2-54.2)

) ) 297 )
(! = -;§$ I du j wdw J d8 j exp (-] [a (& #')-b(Sing-Sing") 1}[F (8 aiw)1de

=00 =00 ':0 Q' =00

© (2-54.3)

1
wd, foexp) (i 8') wd fexpi (#r8)) (2w Pd fep (G 8)

[Fi;(8: 87w 0= |wd foexp(-jd-ja') wd f exp(-jgtje’) (2w)l/2duf0exp(-Jo)

)1/2

1/2 - .
UZU) dwfoexp( j8') (2u dwfoexp(JQ ) 2u dufo

(2-54.4)
where fo(w,u) is the velocity distribution function of the electron gas
at equilibrium, without the applied a.c. field; u and w are the longitudinal

and transverse components of electron velocities respectively,

N
v i b s i " o & O o O S T O 6 e O =
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a = (w-Ju-ukonp)/wH;
and b = w kont/wH.

By assuming fo to be Maxwellian(3), i.e.:

fo = [m3/(8n3k3T3)]l/zexp[-(w2+u2)m/(2kT)] (2-55)
one can find slightly simpler approximate expressions :-for the elements
of the matrix (K) for certain values of © provided that

[n]? k2 Kt/ (mad) >> 1 (2-56.1)
and

Re(n2/|n|2) >0 (2-56.2)

Assuming inequalities (2-56) are satisfied, then

1°) for le| << 1

—}—j(s/n)Cosze 0 j(s/n)COSGSi;;
(K) = 0 1-j(s/n) 0 (2-57)
_;(S/n)CoseSine 0 l-j(S/n)Sinze
where
s = X(me/w)Y? = 0.966 x 10° x T7V/2 (2-58)

For the derivation of the above expression the reader is

referred to Appendix 2.
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2°) for g = n/2
:i(s/n)Cot(ﬂ/y) 0 0 o
(K)= 0 1- (2s/n) Cot (7/y) 0 (2-59)
B 0 0 1- (s/n) Cot (T/y) |

The derivation of the above expression is also given in
Appendix 2.

In deriving Eqs. (2-57) and (2-59) we have assumed that the
collision frequency y is zero. Therefore, in both cases (K) must be
Hermitian.* This implies that in (K) of Eq. (2-57) n must be purely
imaginary and in (K) of Eq. (2-59) n must be real.

For the first case, the above conclusion, however, contradicts
the assumption made in (2-56.2) which requires that Re n > \ Imn l.
Because aof this contradiction one concludes that inequalities (2-56)
cannot bg satisfied together. In other words n cannot be arbitraflly»
large if ‘aré n| < 4 (of course, including real n),

It may be recalled that the dispersion surface of (2-41)

which is derived from the fluid equations has asymptotes at |Cose\ = 1/y.

Thus, for small 9,92/2 ¥ -1+ Y; i.e. negr gyroresonance n becomes an
infinitely large real number at @ << 1, in contrast to the results
obtained aone' Therefore, for a more coréect result near gy roresonance
the asymptotes should be repiaced By the numerlical solutions of Egs.

- (2-53) and (2-54).

*See  Appendix 1.
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For the second case, let
]
s = 2s Cot (n/Y); (2-60)
then one obtains the disbersion relation at 9 = n/2 as follows:
i ' I
n - 0.5sn®- 20+ 2.50% - (0.755 2+ 1) n°
'2 2 '3
+2s'n” - 1.25s " n+0.25 s~ =0, (2-61)

The largest three real roots of this equation are computed and
. ]
listed in Table (1-1) for various values of s. In order to examine
whether these roots are consistent with inequality (2-56.1), we first

let s be expressed in terms of temperature:

s = 0.966 x 10° x T 1/2 (2-62)

Then inequality (2-56.1) can be written as
ﬂ 3);( >> 1; (2-63)
s

or equivalantly

1/2 -5

|n T°°° x 10 v | >> 1. (2-64)

Therefore, in general, for given X, Y and T one can compute s

and n from Eqs. (2-62, (2-60) and (2-61), as given in Table (1-1).

For thase solutions of n which satisfy (2-63) or (2-64), they are consistent

with the assumption in deriving Eq. (2-61) and must be correct solutions.
Otherwise they should be discarded. 1In particular for some values of X,

Y and T, three cases will be considered in the following.
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TABLE (1-1}

s! n n, Ny lnmaxls’
1000. 500.0099800 -010.03544600 -7.77026580 00000 .50000998
100. 050.09860300 -004.73159400 -3.33578280 00000 .50098603
10. 005.6948011 ~-002.42433580 -1.078128 00000.56948011
1. -001.8381067 001.11019700 -0.15503451 00001.83810670
0.1 -001.883596 000. 13886565 -0.01572040 0001883598600
0.01 -001.8950423 000.66307124 -0.00157290 00189.50423000
0.001 -001.8962663 000.68789738 -0.00015730 01896.26630000
0.0001 -001.8963895 -10°X1.5729802  ----- 18983.89500000
-0.0001 000.0000000 =====  =-=-- 00000 . 00000000
-0.001 000.0000000  =====  ====- 00000.00000000
-0.01 -001.8977820 000.71505412 0.00157306 00189 .77820000
-0.1 000.0000000 ===-=  ===-- 00000 .00000000
-1, -002.1182282 00130834450 0.15650215 00002.11822820
~10, -005.8128064 002.33128050 1.09581670 00000.58128064
~100. 050. 1005860 004,72230080 3.34049340 00000.50100586
~1000. 500.0100000 100 . 34847000 7.77062570 00000 .50001000
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1) If the frequency is near gyroresonance or its multiples, i.e.

1 1

= . Y<= + ¢, (2-65
5" €< ot e )
p = +1,+2, (... ’

0ge<<l,

then

[Cot a/¥ | >> 1.

I
Therefore from Eq. (2-60), in general, s becomes very large,

and the solution of n with largest absolute value can be approximated by

[4;]

o

i
S S

+ % : (2-66)

)

S
n = —"2 +

S P~
N
[,

i.e. n g,sl/Z as seen in the first and the last three rows in Table (1-1).
Of course, the validity of this root depends on T and ¢ which should
satisfy the inequality (2-64). In case of exact gyroresonance, i.e.
€ =0, n = o for any non vanishing T.

Physically this may be explained in the following manner. In
the absence of collisions, electrons, excited by an electromagnetic
wave at their gyrofrequency (or its multiples), which is propagating in
the plane of their orbits, become resonant. Under the stationary state,
the wavelengths of the electromagnetic wave must approach zero, for,
otherwise the electron orbits will grow infinitely large and will not

be stationary.
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However, once collisions are introduced, in the equations, one

has to replace Y with Y/(1-jZ). This in turn will cause s. to be replaced
by
s = [2.s/(1-jz2) ] cot [m(1-jZ)/Y].
Therefore, for
Y = 1/p, p = a nonzero integer
one would solve for s|
s = [(2js)/(1-j2) ] Coth (pzm)
which is no longer infinitely large; hence, neither is Inlmak

2) For the special case when

X ~0
t -
and Y2 approaches 1 through the line Y2 = ]-X then lims = (1.23)105T 1/2.
X - .0
¥ o= 1-X
Thus in this particular case inequality (2-64) becomes
[}
|n/s | >> 1. (2-67)

This condition is satisfied as long as Is'l is very small, that is for
very high temperatures. Therefore, in this case the approximate solutjons
obtained by solving Eq. (2-61), namely those given in Table (1-1), are
correct.

It is interesting to note that when Y2 = 1-X, n becomes infinite

at 8 = /2 for the cold plasma model in contrast to the above results.
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3) If the frequency is not in the neighborhood of gyroresonance
!
(or its multiples) and half of its odd multiples, the ratio |s/s’| will
be not very large. Hence, inequality (2-63) will be satisfied if

0<s « 1 (2-68)
which corresponds to very high temperature or if

X/Y > 1. (2-69)
In either case the approximate solution given by (2-61) is correct
although n is not very large, as shown in Table (1-1) for s' = 0.1 to
-0.1.

As a conclusion to this section one can state that for the
ranges of @ under consideration n can have arbitrarily large real values
only for g = /2 provided that T is very large and the frequency is near

gyroresonance (or its multiples).
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111. FIELD EXPRESSIONS IN ANISOTROPIC PLASMA
AND CHARACTERISTIC EQUATION OF THE CIRCULAR WAVEGUIDE FILLED
WITH LONGITUDINALLY MAGNETIZED PLASMA

In the last chapter we have discussed the dispersion relation
in a magnetoplasma of various models. In essence this relation is a
description of the wave number as a function of the angle of wave
propagation, or the longitudinal wave number as a function of the trans-
verse wave number or- vice ver;a. For a waveguide not all wave numbers
are permissible since the boundary conditions must be satisfied. There-
fore, in the following we shall first determine the form of the field
solution appropriate to the guide geometry; second obtain a character-
istic equation which relates the dispersion relation to the boundary
conditions and third investigate the electron temperature effect on the
wave number and fields. Later in Chapter V this equation is numerically

solved for two different models of the plasma.

3.1 Derivation of Field Expressions in a Cold Plasma

For the case of cold plasma, once the dispersion relation
(2-24.3) is solved, the field can be determined using Eq. (2-18). In-

serting Eq. (2-32) into Eqs.(2-31.7) and (2-31.8) one finds

o
!

- L2 2 2 . -
j konp( Vj + kxx konp)dx + Jkonpkxydy (3-1)

O
|

. 2 2 2, . .
2 j konp( V] + kxx-konp)dy "Jkohpkxydy (3-2)




Defining
L2 2 2
Sj = (-vj + kxx kOnP)
_ 2 2 2 2 2,,22
Lj = ( ky, n, + kxx) + kxy YJ( konp

and making use of Eqs. (2-17.8) and 2-17.9) one has

L 2 T j=1,2

E. == j kn_ M,
0P~y j

~J

where ﬂj is a solution to the quation

2

(vt

2
+ Vi), =0
Vi)

and the matrix (Mj) is given by

B s -k 0
j xy
M) = k . 0
] xy j
0 0 -L./(k%h?
- j" o p

+ kXX)
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(3-3)

(3-4)

(3-5.1)

(3-5.2)

For the case where Eo is parallel to the axis of the circular

waveguide the solution m for finite fields inside the guide has the

following form
= EGXP(jmquJEexp(yz)]Jml (er)

where J

ml(vjr) is a Bessel function of the first kind.

(3-5.3)
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Taking the Fourier transform of Eq. (2-6) with respect to the

variables t and z and making use of Eq. (3-5) one obtains the expression

for H:
H. = j(k /w . . (3-5.4
; il o W) % v )
where
k“n"k L.+k2n25. 0
Xy j opj
_ -1 2 2 2 2
(QJ.) = (ko) -konpSJ. LJ. konpkxy 0 (3-5.6)
2
0 0 - \
xy ¥j
For n =0,i.e at cut-off one has either
2
or
2 _ 2
2) Vo — kxx + (gxy /kxx)'

For case (1) all the cofactors (Al’ AZ’ A3, Bl, BZ’ 33, Cl’

C2) except C, become zero. Therefore, from Eqs. (2-17.8) and (2-17.9)

3
one concludes that Exl = Ex2 = 0. For case (2), on the other hand,
Ags Bys €, Cpand C, are zero. Egs. (2-17.2), (2-17.3), (2-17.5) and

*The dual ?f this result for a gyromagnetic medium coincides the one given
by Epstein 8),
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(2-17;6) imply that E22 =0 as np = 0. These results are included in
limit cases of Eqs. (3-5). For arbitrarily small n,s one has, with the

aid of Eqs. (2-24), (3-3), (3-4) and (3-5):

s, =0(1) (3-8.1)
L, = 0(1) (3-8.2)
S, = 0(1) (3-8.3)
L, = 0(n2) (3-8.4)
hence
E@l = O(np), (3-8.5)
E,, =0(1), (3-8.6)
Ep = 0(n), (3-8.7)
B2 = °(”§)' (3-8.8)

Also it can be shown that for np <«< 1,

B = 0D, (3-8.9)
Hp = O(np), | (3-8.10)
Hes = O(ni), (3-8.11)
Hzé = O(np). (3-8.12)

This implies that for n, = 0 case (1) corresponds to a TM mode with only E,
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and Ht non-vanishing; whereas case (2) corresponds to a TE mode with

only E’t/np and ﬂz/np non~-vanishing.

For the general,caSE>whereﬂhp # Og;Eq;i(3'5)}shows that sz

can be expressed in terms of Ezj:

. 2
HZJ. = —J[Lj/(konp)][l/(k V.

xy V) 12 (3-7)

In contrast when Eo = 0, the waves associated with j = 1,2 reduce to TE
and TM modes and EZ and Hz become uncoupled.
For the case of small B, i.e. Y << I, the following approxima=-

tions can be made:

2 2,2
Vig = Kolnge T 8)
L2
SLZ =1 koe
a2
LLZ =7 kontoB
p— v r— —
0 -1 0 1 o 0
.2 2
("1,2) = jk 1 0 0 +kpl 0 1 0
0 0 0 0 0 -nt/n
to
L — b —
Tl 0 0| [0 -1 o |
_ 2 3.2
(Q),) = jkgeny 0 1 0 |5 kgl ! O 0
2
0 0 ntolnp 0 0 0
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where nio = 1-x.n§
"i = 1-X
o = XY
B = [x(ng-1+x+2Xn§)/(1-x)]1/2

Thus, from this result and Eqs. (3-5.1) and (3-5.4) it can

be seen that once Eo is introduced into an ionized medium, each wave

becomes a combination of TE and TM modes which are coupled through Y
as given by the first and second terms of the matrices (MLZ) and(Ql,z)
in the above equations.

The characteristic equation of the waveguide will now be formed
by imposing the boundary conditions. In the case of a cold plasma the
boundary conditions require that the tangential component of the electric

field vanish on the conducting boundary; i.e.

EZ(P) =0 (3-9.1)

-and

A
EI(P)xn =0 (3-9.2)

where P is a point on the guide surface; Et is the transverse component
of E and n is a unit normal vector at the conducting wall.
Since Eqs. (3-5) imply that in the waveguide the electric

field generally has a tangential component in the transverse plane as
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well as an axial component and those components are not proportional,
in order to satisfy Eqs. (3-9) generally one has to have at least two
waves of one mode propagating in the waveguide, presumably, one corres-
ponding to the subindex j = -1, namely the ordinary wave and the other
one corresponding to the subindex j = 2, namely the extraordinary wave.
Both of these waves have ‘to have the same praqpagation constant jy along
the z axis, because the boundary conditions have to be satisfied for all
values of z.¢

In this case the total field in the wave guide will be composed

of

and

=8 B to, H

and the fatio betweQn1&1 and 62 will be determined by the boundary

conditions. This is discussed in thé next section,

3.2 Derivation of the Characteristic Equatlon for the WaveqU|de Filled
with Cold Plasma . :

Let the radius of the circular guide be For Then the boundary

*However, for propagation transverse to the dc magnetization, i.e. =0,
waves degenerate into two. One of them has electric field parallel to B z
and the other one has electric field transverse to By(See Eqs. (3-8)).

This enables us to find the zeroth order modal solutions of cold plasma
filled rectangular guides with B, perpendicular to one of the guide walls.,

For an axially magnetized circular waveguide, when np = 0, the ordinary
and extraordinary waves become uncoupled. One of them is a TE wave
and the other one is a TM wave each of which satisfy boundary conditions
separately.
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c§nditio?§lgivej by Eq. (3-8) reduces to E, = E¢ =0atr=r_. From
these conditions; oﬁé 6btains
[Sl(a/aro)nl(ro) - kxy(m/ro)nl(ro)]al
+ [8,(3/ar D,y (r ) - ] kxy(m/ro)ﬂz(ro)]&2 =0 (3-10.1)
Lty m(r)/kgn )18y + [, ma(rgd/(kgn ) Js, = 0 (3-10.2)

For the nontrivial solution of the field (i.e.51#05 52#0) the
determinant of the coefficients in (3-10.1) and (3-10.2) must be equal

to zero, namely:
1 _ - (- )i
Slnl(ro) j kxy(m/ro)ﬂl(ro) Sznz(ro) j kxy(m/ro)nz(ro)

J L1 "l(ro)/(konp) i L2 1'TZ(rO)/(konp)

(3-11)

This characteristic equation contains the unknowns np and V1,2
and can be solved in conjunction with the dispersion relation (2-24.3).
The roots np give propagation constants of the modal fields that can
exist in the waveguide. Once np is determined, the functions m; become
known and from Eq. (3-10) one can find the ratio of (51/52) for any
root np and this will complete the determination of the modal waves.

For np =0, i.e. at cut-off we have seen that EI and EZ do

not belong to the same wave, i.e., one belongs to the ordinary wave and



the other one to the extraordinary wave. Therefore, now the boundary

conditions can be fulfilled by each wave separately. For the TM wave

which has

2
Vi =Ky

the following condition

1/2

Jm[(Kzz) ko"od =

has to be satisfied; and for the TE wave which has

2
Voo T kxx + (kxy /kxx)

the characteric equation becomes

[m/(koro)3(Kxx-ijy)Jm(nt2 koro)—KxxntZerl'l(ntZ koro) =0

9 2 2 1/2
N, = [(X-2Xk1-¥7) /(1-Y7-X) 1777,
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The above two equations will determine the cut-off frequencies

for TM and.TE waves.

3.3 Derivation of Field Expressions in aSWarm Plasna

In Chapter II we obtained the dispersion relation for a plane

wave in a warm anisotropic plasma. Since the dielectric dyadic in such
a medium is a function of both the frequency (w) and the wave vector k,

and since the formulas determined are valid only for k in the xz plane,
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the characteristic equation cannot be so simply determined as for the
cold plasma case in the last section. To proceed we may consider the
field in the guide as a superposition of infinitely many plane waves.
Let us consider a wave propagating in the medium with a cer-
tain refractive index component np along the z axis. Using Eqgs. (2-42),
(2-44) and (2-45) one can find the three values of n, which correspond
to that particular value of np. Let N Me2e and Nea be those three
values. The transform theory tells us that, together with the dispersion
relation (2-42), corresponding to the given n_ one can have infinitely
many propagating plane waves, the transverse component of their propaga-
tion constants having the magnitude of one of the three values of N
Let us focus our attention on only those waves which for example have
their transverse propagation vector with magnitude kontl'
In the transverse plane ong can consider an interval of angle
(3, & + d3) and assume that one of the characteristic plane waves with
the transverse propagation vector lying in.this interval have a field!
strength A(g), where A(§) is some complex<function of the rea} variable 8.

Since A(§) must be a periadic function of & with the period 247 one can

expand A($) in a Fourier series as

AR =) A ex(jme) (3-12)

ms=0

Let us now consider a certain term of this series, for example

m = mp and then determine the field at a point P with cylindrical coordinates

(rs ¢ z). Figure (3-1) shows the geometry of the cross section of a guide.
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— Waveguide
Wall

Figure (3-1) The cross section of an arbitrary waveguids
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Let us consider a transverse propagation vector which makes
. 1 . .
an angle & with the x* axis of the transverse plane. According to

Equation {3-5) the contribution of this particular wave to the EZ

at P will be

dE_ = Amloexp(Jmlé)exp(J kontrS|ne)exp(-Jkonpz)d@ (3-13)

where 8 is the angle between the position vector of P and the wave front.

Since & = @+3n/2-9

if one defines CO with the equation

Amloexp(jm13w/2) = kon, C3(np)[Co/(21'r)]d§ (3-14)

where for a fixed @
d® = -ds (3-15)
and C3 is defined with Eq. (2-18.3).

Integrating over all values of & one obtains for Ezj

Ezj = -kontjC3JCOjexp(—Jkonpz)exp(Jm1¢)x

2m
(1/2m) f exp(jkontjrSinQ-mle)de (3-16)
86=0
= - - +i L) 3-17
or Ezj CojC3jkontjexP( Jkonpz Jm1®) X Jml(kontjr) ( )

where, as before, the subscript j is added to denote the j=th character-

istic wave of the medium.
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In obtaining the solution given above, the Bessel function
| is chosen as solution in order to have the field finite in the guide.
The r- and - components of the electric field at point P
‘ can be found from the follow#ng equations:
1
E . =-Sing dE_. t+ Cosg dE_. 3-18.1
d ] ng ExJ ) vi ( )
and
|
| dE i =-Cosg dE,; - Sing dE . (3-18.2)
where
dEkj =-Cojkontjcljexp (;Jkonpz+ml@)
f x (1/2q) exp[j(kontjrSine-mle)]de (3-18.3)
i .
dEyj =-Cojkontj62jexp(—Jkgnbz+m1q9
x-(I/Zﬂ)exp[l(kdntjrS:ne—mle)]de _ (3-18.4)
and clj and c2j are defined with Eqs. (2-18.1) and (2-18.2) respectively.
Integrating over @ again one finds
’Er-j = Cojkontj[exp(-Jkonpz + Jmlw)]
(_Jclj-CZJ)Jml-l(kontjr)
x (1/2) : (3-19.1)
LR ERN N r)]
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and
EKPJ N coJ ot Lexp (~ik,n Z"-Jmlc"):|
(cU-chj)Jml_l(kontj r) (3-19.2)
(1/2)
+ .
(clj+Jc2j)Jml+l(kontjr)
or
E".i = JCOJ. [exp(-Jkonpz + Jmlcp)]
[CZJ. (ml/r) \Jm1 (kont_j r)—ClJ.erml (kontj r) (3-20)
and
Ecpj = -j Coiexp (-j konpz+jml¢,)
[clJ. (jim, /) Jml (kontj r)+C2j er”‘l (kontj r) ] (3-21)
It may again be noted that CU,, C2_j’ c3j inm the above equatians are the
cofactors belonging to the j-th characteristic plane wave and are ex-
pressed by Eqs. (2-18.1), (2-18.2) and (2-18.3). They are
4 2 2 2_ 24 2
C,. = kon F.-1+nTHW[F. (I-F,)-2F +WF -22.1
1j = omng {F; n[< j)72F it TR 21 (nf-y“m)3  (3-22.1)
c2j = JngFannt (1-w) | (3-22.2)
2 2, 22 2 2
C.=kl +F, (~2+n+n"+X ) +WF . +n -2 - 3-22.3
3] [anJp(anX) (nnpnJ Xn)] (3-22.3)
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where
Fy = X/[l-Y2+w(-nJ?+¥2n§)] (3-22.4)
and - (j = 1,2,3). It should be reminded that so far only the Fourier
component for m ?'mi'is considered.
In general one can define a potential function m as
o0
= - i -23.
m; Eltoj(m)Jm(kontjr)exp( Jkoan - mep) (3-23.1)
=00
This implies that
3
= 1T (3-23.2
ﬂ ziaJﬂJ )
j=1
is a solution to the differential equation
2,2 2 2, 2 2 2,2 2 _ )
(vt +ko N )(vt +k0 Nyo )(vt +ko i3 )m = O (3-23.3)
Then one finds that
E. = -j M., . -23.4
<] J konp g VWU (3-23.4)
where
o -
-C,, 0
c1J CZJ
M.) = [1/(k.n C,. C,. 0o - 3~23.5
;) = [1/(k;n,) ] 2] 1j ( )
0 0 C3jntj/np
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Using the Fourler transform of Eq. (2-6) (with zero magnetic

source current), one can find the expression of H. in terms of “] as

~J

H, = j[k / K., - . (3~23.6)
B = Il g I - o
where (Kj) is
anZJ -ntjc3j+npclj 0]
K.,) = .C.,.-n C, . C.. 0 .(3-23.7
(K;) "tj~35 "1 "p 2] ( )
0 0 -(n ?/n )C...
tj" p’ 2]

From these equations one can see that the ekpreésions for Ezj

and H_. are given as
Z)

E.=¢C

2 3] kontjnj (3-24.1)

[1/ Cansg) 26, kint?ﬂj (3-24.2)

H_.
ZJ

This relation shows that in general EZ and HZ exist together.

From Eq. (3-23):one can derive an expression for the convec-
tion current I using the relation

Curl H - jumo E=-1 . (3-25)

The convection current carried by the electrons then can be

given as

< om. (3-26.1)
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where (Vj) is given as
B ]
-n_.n C..+(n 2-1)c . (-n.2+1)C, 0
tj P3j P 1j J 2j
(v.) = (n.z-l)C . -n_.n_C,.+(n 2-l)C ; 0
J J 2] tjp3 P 1j
0 0 /n )(-n +1)C -'nt Cl
(3-26.2)
To complete the discussion, the expression for the ac N is
given by
. 2 _
N = ~j (e k, /e)ntj (ntJ-ClJ o 3J)n (3-26.3)
From the approximate roots of the warm plasmg dispersion
equation obtained in the last chapter, one can‘conclude that, as long
as any one of the inequalifites (2-46.1) and (2-46.2) together with the
inequality
IWFJ.l <«< 1 (3-27)

is satisfied, the expressions for Cij (i =1,2,3; j = 1,2) in Eqs. (2-22)
will be very close to those found for the cold plasma case. In other
‘words, under thfs condition, two of the chara;fgrist]cEwaves-becpme
alﬁost identical to the ordinafy and.extfaérdinary waves of cold'plasma,

and their normalized value Eij/coj (for i =r, @ Z5 j = 1,2) will not
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be very large. For the third characteristic wave, i.e. the plasma wave,
however, Ei3/co3 (for i = r,¢,z) assumes very large values. Because

Ingj | <dlnggl 3= 1,2
implies that
|ciJ.l << [cl i =1,2,3; j =1,2.
For the plasma wave the following approximate expressions can
be given:
~ 4 vy 2 3/2
€5 = konp[(l-XAYv ) /W]
~ . 2 1/2
Cpy = Jk04Yn.p[(l-X-Y ) /W]
~, 4 2 2
C33 = ko np [(1-X-Y“)/W].
Under the condition of inequalities (2-46.1), (2-46.2) and
3-27) for o
2
n, << W (3-28.1)
one has
ngy T L12-x 20 )/ -1 2312 4 o) (3-28.2)
Nep = (1—x)1/2 + 0(w?) (3-28.3)
Ng = t(l-xw\/z)/\,l]l/2 +o(w' ) (3-28.4)



and hence,

4
Cip,p = Kk, 0(n)
4 -1.5
€1a = kg O(np) 0 (W )
4
Cor,a = ko 0(np)
4 -.5
c23 = ko O(np) ow *7)
4
Ci10 = k, 0(1)
4 -]
Cas =k, o(w )
E é—
r ¥ 4
]
H H ‘H =
r ;2
|
Ir I Iz 1,2 LJ.
Nl’2 = O(np)

DQnP)

. O‘np%Xme(l)‘z 0(1) - 0ln)

O(nb)

o vo(np) 0(1)_1

(3-28.

(3-28.

(3-28.

(3-28.

(3-28.

(3-28.

(3-28.
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10)

i1)

O(np) 0(1)

(3-28.12)
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e B,
H HCP H, =
1 1 I
| T P 2|3

- —

O(np)O(w'z) 0(np,)o(w'1) ow !5y

+mo(np)o(w'l'5)
0(np2)0(»f1) . oW o('np)o(w’l's) (3-28.1.3)
+ mo(w 15
0(n JoW2) 0(n )0 (W ?) o(w 2:9)
N, = o(n )oW 23, | (3-28.14)
o} .
From Eqs. (3-28) one can see that for np = 0 all three .

waves become TM, having Ez’ Ht and IZ components only. Remembering
that W << 1, from Eqs. (3-28.14) it is also seen that, beyond the cut-

off, the third wave is mainly a TEM wave with the components Er"H and

I .
z

3.4 Derivation of the Characteristic Equation of the Wavequide: Filled
Lth i Flasn e
The boundary conditions require that the tangential electric
field vanishes on the waveguide wall. In-addition, it is also assumed
that on the boundary the normal component of electron velocity vanishes,
so that no convection current flows into the guide wall and the neutrality

of the plasma is maintalned#. To summarize, the boundary conditions are

E, (P) x no=0 (3-29,1)
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E, (P) =0 (3-29.2)
A
1 (P) *n =0 (3-29.3)

!

where P represents a point on the waveguide wall andigjis the unit
vector normal to the guide wall at P.

As discussed in the last chapter, in a warm plasma there are
three waves each associated with a refractive index surface, namely the
ordinary, extraordinary and plasma waves. The total wave in the wave-

guide then can be expressed as

E = 5 +8 E, +765E, (3-30.1)
Ho= g ) +78,H, + 85t (3-30.2)
I = &1 +eyly) + 8,1, (3-30.3)
N = GiNl + 52N22+ 63N3 (3-20.4)

As a consequence ‘of the boundary conditions (3~29) in general
all these waves become coupled*. Inserting Eqs. (3-23) and (3-26) into

Eqs. (3-30) making use of (3-29) one finds three linear homogeneous

*For np =0, as it can be seen from Eqgs. (3-28) the three waves can
satisfy the boundary conditions separately and thus become uncoupled.
Unlike the waves in cold plasma, three of them are TM waves having their
electric field parallel to B,. Therefore, simple modal solutions of
zeroth order can be found even for rectangular waveguides with B, per-
pendicular to one of the guide walls.
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equations for 51, 52, and 53. In order to have a nonzero solution for
5i‘s, the determinant of the set of equations must be zero.
The resulting characteristic equation for a circular waveguide

is very complicated and can be expressed as follows:

i 8, L
z1 22 z3 = 0 (3-31.1)
R Ry Rs
where
= ! 1 o ..
[m/@k r lJ( -L3 +C )J (n:.k r )+C2J 5 m+1( tjkDEDZ (8~31.2)
= i ) Qe
j ey J (ntJ Ko Fo) (3-31.3)

=L/ (ko o) I (- 2i1en )c5j+(gpz-1)clj—cn Pplngikoro)

(n, .k

} [(n -l)C' _C. ]ntJ m1 " tj o o

) (3-31.4)

C;.

2 2. 2,2
Fo-1+(n_ “+n 2)+WF [1-F.-2(n_ %n 2)4Y2F,
jTIH g g TV L2y B DY)

+ WZsz(n jz n 2-y%n 2) (3-31.5)
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Cl., = -YF,(1-W 3-31.6
2 J( ) ( )
2 2 2, 2 2 2 2
1, = len 7= + . +F,(~2+n_ . "+2 +X
63J lntJ 2np (nt‘l my )np , J( ¢j 2N, )
2 2, 2, 2 2 ‘
+ VF‘["tj --z(r\t +np )np an ] (3-31.7)

——

" 164/ 9)- (° (3-31.8)
: jwz+zﬁ;c°s%[(j'l)m-+tan W 27;;: /27

-1 o (@)= (PPran)
0 < tg "R < (3~31.9)

(2
[l

1
, [-1+x+v2]+w[-z+zx+(3-v2)np2] (3-31.10)

6, = [l2-axxxv-2v) + (-2v2x-x?s2vh)n 2
2 v2y. 2 2, 4 H
+ W (1-2X+X%) + (-4+ax+2y )np + (3-2v )np-] (3-31.11)
6y = [(-1+3x-3x% - xv%+v?) + (2-4X+2X2+2XY2-2Y2)np2

+ Crxexr®d)n *1 4 up -2 yAn 2 (-zvaxeart)n *

+ (1-Y2)np6] - | (3-31.12)
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-p/3 = (Gz/aw)z-cl/(sw) (3-31.13)
- 3 2 -

-q/2 = '(G2/3") +GIGZ/(6W )-Go/(ZW) (3-31.14)

The quantities used in the above equations are related in the

following manner:

4
] —_ -
clj = Cll(ko npntj) (3-32.1)
4
1 — -] -

C2j = CZ/( Jko npntj) (3-32.2)
o= c ik’ | (3-32.3)
3j 3 o ’

' 5
Qj = Eq,j(ro)/(ko npntj) (3-32.4)
5
zj --Ezj(ro)/(ko ntj) (3-32.5)
5
Rj = Irj (ro)/(weoko npntj) (3-32.6)

The above quantities are introduced in order to make the
characteristic equation dimensionless.
For j = 3, we have the following approximations if W << 1:

-.5
N3 =« . (3-33.1)




P

1
C13 o

[ =~ _
C23 = Y

~ "‘1 2

' =

C33 o np
2
where v = W/(1-X-Y).
Hence, 63, Z3 and R3 can be approximated by
-1 -0.5 -0.5 -0.5
& = Ao Jm(d R)-Y ¢ Jm+1(01 R)
-1 2 -0.5
Z3 = =0 np Jm(a R)
-1 -0.5 -1.5 -0.5
_ _ . + . .
R, A (Y I)Jm(a R)+o Jm(d R)
where
A, = m/(koro)
R = k.r
00
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(3-33

(3-33

(3-33.

(3-33

(3-33

(3-33

(3-33

(3-33.

(3-33.

Considering the case that N1 and N, are much smaller than

Nigo Egs. (3-31)

and (3-33) reveal that generally

19,1, 18,1 << |8,]

(3-34.

.2)

.3)

4)

.5)

.6)

.7)

.8)

10)

1)
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1Z,1:12,] <«< |2, | (3-34.2)
IR 1R,y | << Ry | (3-34.3)
and also
|¢3|,lz3| << [Ry]. (3-34.4)

Expanding Eq. (3-31.1) and making use of Eqs. (3-33) one obtains

the following equation:

[x Q/O.S —O.s

m

-0.5
Jm(a R)-YdJm+l(~ R)](lez-zle)

+ o2 5n2y (a‘O'SR)(éle-alR

pm 2)

-0.5

+ [xmno-S(v-l)Jm(a'o'SR)+ J (o

—_ R)1(#,2,-8,2)) = 0 (3-35)
For the regions defined by inequalities (2-47.6), (2-47.7)
and (3-27), «, as defined by Eq. (3-33.4) is very small; hence, in

Eq. (3-35) the first two terms which are O(ao's) can be neglected and the

characteristic equation reduces to

0.5 0.5 _ 5. o _ )
Il TRI[&Z-8.2, T+ 0(0""°) = 0; R = Koro (3-36)
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Thus neglecting the term 0(o 7)), the roots np of the
characteristic equation can be divided into the following kinds:
1) The roots of
§,2,-8,2) = O. (3-37)
This equation can be identified as the characterisitc equation for the
cold plasma case. Let us name the modes which correspond to these
roots as ''quasi-optical modes."
2) The roots which are determined by
0.5y . 0. = -
Jpla T TR) = 05 R =k (3-38)

It should be pointed out that in this approximate equation np
does appear explicitly and this shows that np can assume almost any
value as long as the approximation is valid. Thus in an nP versus kor0
diagram those roots will be shown by approximately vertical parallel
lines. However, the exact roots which belong to this class slightly
deviate from the approximate solution. As will be seen in Chapter V,
the value of np is very sensitive to o« or koro; i.e. a large variation
in np may result from a small change in ¢ or koro.

The modes which correspond to these roots may be called '"plasma

modes .
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After having found Ny Jm(nth)'s can be computed; then the
relative magnitudes of various waves for each mode can be solved from

the set of equations:

inei®y F Epnipby + 4 a8 = 0 (3-39.1)
Zyng 8y + Zyn o8, + Zyn 8, = O (3-39.2)
Ryne181 + Ryt p8, + Ron 16y = 0 (3-39.3)

In the following we shall assume that inequalities (2-47.6),
(2-47.7) and (3-27) are satisfied.

(a) For quasi optical modes, making use of Eqs. (3-39.1) and
(3-39.2), (3-23) and (3-26) we obtain the relative magnitudes of three

characteristic waves as in the following:

N Gl’z(az) (3-40.1)
B £, E_| E_0(a”) E@O(ao's) E0(e”"%) ]
S| He By M| o=y, 1™ W) H 0(a”"®)
| R 1%_ 3 EIO(I) 1@0(0) IZO(a—O'?le,Z
(3-40.2)
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Using the above results we can compare the solutions of

and compressible fluid plasma models and conclude the following:
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(3-40.3)

cold

For

E_, H

both models the propagation constants are almost the same. E

cp,

z

r

and HZ are also unchanged. However, with the introduction of the com-
pressibility in the plasma Er and HCp are modified with a considerable

contribution from the plasma waves. The transverse component of the

convection current Ir’ has contributions from the optical waves as
well as from the plasma wave. The axial component of the convection
current and the density, however, are essentially due to the plasma

wave.

(b) For the plasma modes, Eqs. (3-39), (3-23) and (3-26)

yield the following results:

8, = AI’ZO(QI'S) (3-41.1)
£, £, E € ola "%} £ 0(1) £_0(1) |
s , Lo | o) HOlo "0+%) W_0(1)
i | _}ro(o -0.5, 1,0 0.5, i ol -{21,2
(3-41.2)
85N, sl’le’ZO(a‘l) (3-41.3)
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Earlier in the discussion of Eq. (3-38) we have shown that
the propagation constant np of these modes are very sensitive to the
transverse propagation constant of the plasma wave or the temperature.
The above results, however, show that the field components of those
modes are contributed essentially by plasma waves. And these modes
behave almost like TEM waves having Er’ Hw and Iz as the main field
components. For this reason, these waves are called plasma modes.

For a given waveguide with fixed B the waves of frequencies

~

which satisfy

JmH[;/{[l-(sz/wz)-(wNz/wz)]/w (wro/c)] + 02 =0 (3-43)

will belong to these modes. As mentioned earlier, in a plot of n

versus frequency, the hybrid modes will be forming a set of lines
which are almost parallel to the np axis. One can see that to excite
one of these modes individually will be almost impossible. Because,

even if Bo and the electron density could be maintained absolutely

constant (which is an impossible condition), a very slight change of
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frequency would cause a propagat ing mode to become an atte nuating

mode.

To summarize, the introduction of compressibility in the
plasma brings about new modes as well as some modifications on the
fields, despite that the k- diagram of a cold plasma model retains
strongly its own identity even for relatively high temperature. It
is most interesting to find that > these new modes have pro-
pagation constants so densely packed that they become almost a con-
tinuous band. Because of the strong modification of the fields, in
general, it is expected that the impedance of an antenna inside the

guide may assume different values, depending on the plasma models.
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IV. ORTHOGONALITY PROPERTIES AND POWER RELATIONS

Let us consider a medium of uniform anisotropic lossless
plasma and confine our discussion to electrons only; let us suppose
that in the medium we have an electric current source éL(I)’ a magnetic
current source Zg(r); a particle source which creates ‘dtJOA particles
per unit volume per second and a mechanical energy source with a mean
force?i;(r) over all particles. Now we consider a second medium which
is identical to the first except that the static magnetic field is
reversed in direction. To distinguish source and field quantities in
the two media we shall use the subscript "a'' for one medium and ''b" fof
the other. In the following we shall develop a relation for all field
and source quantities in these two media.

From the Maxwell equations and the first two moment equations

for both cases as stated above, one obtains:

[ ARNCUNES R Y. AR VRN R
S

- g b & K et P g, F
v

- £, -4, - M+ eT N d fi-(1/e) & - F1)dv (4-1.1)

~
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where Te = Jk¥/e, (4-1.2)

S is the' glos;ed surface of a volume V; Na and Nb denote the perturbed
electron den.'sit‘y in media ''a'' and ''b'', respectively,No theawerage density
which is assumed to be the same in both media; é is the outward normal
of S.

1f one writes the Maxwell equations and the first two moment
equations in g démain for the medium "a'* and than takes the complex
conjugates of all four equations one obtains the field équations for the
medium "b,"* Thus the fields and sources in one medium are related to

those in the other one by the following equations:

_Ea = E (4-2.1)
HE o= H (4-2.2)
-N¥% = Nb (4-2.3)
Ea = 1 (4-2.4)
-Ea = ,Eh (4-2.5)
pro= Pb (4-2.6)
-Ea = Eb (4-2.7)
JE o= (4-2.8)
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These results hold even if the medium contains perfect con-
ductors, since in both cases it is required that Elx ¢ = 0 and l‘- n=20
on the conductor.

Let us consider as before that Eo is parallel to the z axis
and the guide axis parallel to the z, axis. Then the quantities in

medium "a'' can be written as

E, = EaexP(Y;Z') (4-3.1)
Hoo= hexply'z') (4-3.2)
, Ea = iaexp(y;z') (4-3.3)
Ea = naexp(y;z') | | (4-3.4)

| {
where 5 is the constant along z the guide axis as distinguished from y

which:.is the-propagation constant along z or Eo' These expressions will

be used later.

Since both (4-1) and (4-2) hold for any two fields as long as
they are solutions to the Maxwell and transport equations for media ''a"
and '"b'' respectively, one can obtain the following general relation
between two fields subindexed by ''m'' and ''n'' respectively in a source

free region enclosed by a surface S:



“{[.Eam xﬁlja'nx ) Te(Nam/No)ﬁ{a;n')ﬂJ
S

'[(',Ean*)xNHam_Te(_N‘an“/No)'}'?m]}'di =0 (4-4)

Now this relation hold for any field quantities :in the same
medium; therefore, for simplicity the subscript ''a'' may be dropped in
the following discussion.

Let S be composed of the following three surfaces : SO

[ [ !
and S1 perpendicular to the guide axis at z' =0 and z~ = zo' respec-

tively and the third S
Figure (4-1). Since on 52, Em and En“ have vanishing tangential com-

ponents and 1_and I * have vanishing normal components Eq. (4-4)

becomes

[Jie, x - 1 06 /)1y
) y

(o]

A
* - % t
+[EX X H - T (N/N)T 7}.2*dS

[Jate, x we - 7 8 AN 1]

3

A

w - o i -
+[EX X H = T (NS/N )T Lz dS (4-5)

80

2 coinciding with the waveguide walls as shown in
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Figure (4-1) Longitudinal cross section of a waveguide
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or using the relations (4-3)
”{[e X h=T_(n /N )i*J+[e* X h =T _(n*/N )i 7} Q'ds
~m ~An e m oand tin T Am e n 0 Amed’
S
(Y I+Yl-,')zl
=em N °J‘{[e X h%-T (n /N )i%]
3]
\
i
+[e¥ X h =T (n%/N )i ].z'dS. (4-6)
'~ ~m e n O ~Am
'
Since z_ is arbitrary, one has
H{[Em X hi-T_(n /N ) D¥TH[ek X h =T (wi/N )i ].d§ = 0 (4-7.1)
S
. l 'l
if Yo oY, ¥ (4-7.2)

where s is any cross-section area of the guide. Actually this result
is valid even if the static magnetic field is not parallel to the guide

axis.
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From the Maxwell and the moment equations it can be seen that
if the quantities with subscripts 'm'' as indicated below on the left
side column satisfy the equations, then the corresponding quantities

listed on_the right side column also satisfy the same equations:

(a/az)mA - -(a/az)m ory. - Y, (4-8.1)
étm - -étm (4-8.2)
o - %, (4-8.3)

é;m - égzm. (4-8.4)

‘,rzm = -%m (4'_8.5)

’g,tm = -?gtm (4-8.6)
dp v g (4-8.7)
,,/jg‘ - ._4;] (4-8.8)
I (+-8.9)
For —  Fom (4-8.10)
§ A -~ =P (4-8.11)
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A | (4-8.12)

Z&m - -ékm (4'8'13)

sz Ed sz (4"8. 14)

Now since all the quantities listed on the right side column
satisfy the equations, one can substitute them in Eq. (4-6) for those
A A

quantities subindexed "m'* and obtain the following relation if z // z or

Eo is along the guide axis.

T T X BT oM BTl X g T /NG T} 1o Loy 2, 1)

~m
s
.dS =0
(4-9)
Thus, if
A A A
B //z' (or z//2'), (4-10.1)
~O
and Yo * ¥, (4-10.2)
then one has
r e | S e
[[eten x gt o) 153
s
* - ¥ i = (4- .
+ [ex X ho= T (/N )i 1}.dS = 0 (4-10.3

where s is any cross-section area of the guide.
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By combining Eqs. (4-7) and (4-10) one can summarize the follow-
ing results for a waveguide with a fixed static magnetization:

|
Case 1) If B, is not necessarily parallel to z , the guide

[ '
axis, and + Yo # Y, " (4-11.1)
then
fj{[sm X W= (n /N ) T pHex X =T (na/N )i 1345 = 0 . (4-11.2)
S

-If in addition to the condition

oy, oy (4-12.1)
A'
also B //z’ (the guide axis) (4-12.2)
JILSm X h#=T_(n /N )i%].ds = 0. (4-12.3)
s
Case 2) If
l, ' : '
Yo T Y * but Yo # Yo * (4-13.1)
and
A,
B //z° (4-13.2)
then

[Jten x et (00n 15
S

+ [ef X h =T _(n#/N_)i 1}.ds = 0 . (4-13.3)
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' 1 [ 1,
Case 3) 1If Ym = ¥Yn * but oy # Y, * (4~14.1)
then
¢ A / i%4-[ev | - W i =0.
jj{[Sn,fprTTe("m’No)lB]*[Sn X h -T_(n#/N )i 1}.ds = 0 (4-14.2)
s
A

. . ]
which is also valid even if Eo )<\E,'

Using the above results one can determine the power carried
by each mode in waveguides.
Let us first consider a field with complex propagation constant

which is neither real nor purely imaginary. Then it is obvious that

oy, g T (4-15.1)

Since the results obtained above are valid for any field m
and n, in the following we consider the relation between the mode and

itself. Then from Eq, (4-11.2) one obtains

Re[l[e X hx-T:(n /N )i*].dS = 0. (4-15.2)
Jt<m T Aam e'm o'~m’ T~
S
This result shows that fields with a propagation constant
which is not real, carry no real power. This result is true in general,
)
because Eq. (4-11.2) doesn't require that Eo be parallel to z . For
a lossless guide this result is expected, because a complex propagation
constant would imply attenuation of real power along the waveguide, in

contradiction to the assumption of losslessness.
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A,
Next, for B, /lz (4-15.3.1)
from Eq. (4-12.3) one has
(Re and Tm) [[[e, X ht=T (n /N)i%7.d5 = 0. (4-15.3.2)

$

Thus, with axial magnetization, modes with complex constant also carry

no reactive power,

Let us assume that Y is real. Since now

Eq. (4-14.2) lead to the following relation

Re”[f;n X lo=T (n AN )i%].ds = 0. (4-16.2)
S

This is also generally true regardless of the direction of Eo for the
same reason as before. Thus, as expected, the attenuating modes carry
Y
no real power flow.
Last, consider a:propégatibh consfanéjwhiﬁh isféurely-fmaginary.
In this case

Yy T Ym""‘. (4-17.1)

Then, from Eq. (4-14.3) one gets
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Im‘“.[fm Xzﬁ-Te(nm/No),Sg] =0. (4-17.2)
S

Thus the propagating modes carry no reactive power.,*

In concluding this chapter, we may state that, as far as the
real power is. concerned, it is not necessary to consider the complex
roots of the characteristic equation. If the dc magnetic field is
parallel to the guide axis only the purely imaginary v's contribute
to the real power. Therefore, in the next chapter only the real and

purely imaginary roots of the characteristic equations of the wave guides

will be considered.

*The energy relations can also be found in P. Allis, J. Buchsbaum and

A. Bers ''Waves in Anisotropic Plasmas''(3) with a different approach of
derivation,
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V. SOLUTIONS OF CHARACTERISTIC EQUATION WHEN THE dc MAGNETIC
FIELD IS PARALLEL TO THE GUIDE AXIS

It may be recalled that the characteristic equations derived in
Chapter II1 for both the cold and the warm plasmas are even functions of
the unknown np. Since, as concluded in the last chapter, we are interested
only in the purely real or purely imaginary roots of Mo it suffices to
determine the real roots of np2 in the characteristic equations, the
positive roots of np2 corresponding to propagating modes and the negative

corresponding to attenuating modes.

5.1 Cold Plasma Case

In the case of cold plasma the characteristic equation of the

waveguide can be written as

LJm(ntlkoro)Jm(nt2k0r0)+MJm+l(ntlkoro)Jm(ntZROro)

+ NJm(ntlkoro)Jm+1(ntZkoro) =0 (s-1)

where

- 2 1/2
N2 = [A(BnP +C+U)]

f— .
i

= [m/(vl-vaz)]u(vl-vz){(v1+v2)[vzz(v1+v3)-v1v2v3

y 4 ' 2
+ V) (v3jv1)]nP 7v1v2v3}

M= -[vzkwl/(2v3)]{(v22-v12)(v22-v

2 4
| +V1V3)np



2 2, _ 2
+[V, (v +vg)+2v, “(v, V) In,

2)

2 2
+v1(v1-v3)-u[(v2 -V, " +V, 1}

2

2 . 2y 2 4
N = [V,RW,/(2V5) T{(V,"-V, ) (v, 7=y +V1V3)np

2 2 2
+ [V, (v v )+2v, “(v, V) n,

2 2, 2
+ vl(vl-v3)+U[v2 -V, )np +v1]}

2
1

2

2 2 4 2 } BYRY
U= (v, 5=V, "+, V) n, +2[V, (V) -V, (V-V,) I,

2,1/2
+ (V=V,) 7]

A = 1/(2v1v3)

B = vzz-vlz-vlv3

C = VH,

v, = (1-v2-%) /7 (1-v24x3-2x)
v, = =X/ (1-v?+x%-2x)

Vg = 1/(1-X)

R = k_r

20
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In this equation if X and Y are such that

y = |1-x|

Vl and V2 and consequently U, N 0 L, M and N all become infinity

t2’
for any value of npz. Thus, in such a case one cannot determine the roots.

Alsg for the case where

Y ;‘(l_x)l/z’

Vl becomes zero and ntl’ Neo and L become infinity and again one
cannot find any roots of the characteristic equation, On the other hand
as X = 1, V3 goes to infinity and the characteristic equation can be simpli-

fied to the following form:

2)1/2 1/2k

-m(1-n )2 (1-17w) (11/¥%) g 100 B R g

]

2y 4., 2 . /2 - _
H(R/Y) [(-1+417Y )np *2n,° 13,4 [ ny ) kT o) ] 0 «(5-2)
To find the redl roots of np2 in Eqs. (5~1) and (5-2), the regions
of np2 in which the left hand sides of these equations become real are
studied. The lower and upper bounds of these regions are determined from
one of the following three equations:

n =n

tl t2

Mgy = 0

N2 =0
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For any of these three cases the characteristic equation is
always satisfied, regardless of the value of ”koro” and ''m.'"" However,
in these cases the total fields inside the waveguide are found to be
zero also.

The regions of np2 in which there might be a root of the
characteristic equation depend only on 'X!' and "Y' and not on 'm' and
”koro.“ Figure.(S-l) shows those regions for various values of X and Y.

From Figure (5-1) it is seen that the regions of np2 in which
a solution for the characteristic equation may exist can be at most two.
The first region correspond to attenuating modes only, since its upper
bound is always finite and negative and its lower bound is ~®. Thus it
can be called the region of attenuation. Most of the roots in the second
region cqrrespond_to propagaxing modes except‘for a few cases where the
vié%ééhﬁafiééiﬁdnﬁtéﬁgs éfé‘very sﬁali; The' bounds 6f!;ﬁé&§e&ond*regi0n L
are finite. Thus, it may generally be called the region of propagation.
In some cases these two kinds of regions are connected forming a region
of propagation and attenuation with a positive finite upper bound and
‘a negative infinite lower bound: . Regions of this type can be called

connected regions of propagation and attenuation or simply connected

regions.

e g

As it is seen fromlFngré (S-i) for small X énd Y, there
are regions of which the upper bounds are higher than those of other
cases. However, when X or Y or both assumes a large value, generally

larger than 1, the propagating region cases to exist; when X equals to 1,
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the first and second regions become always connected. The determination
of the lower and upper bounds of these regions is a matter of simple
algebra, depending upon the characteristic equation. However, the
terms involved have long expressions in X and Y.

In Figure (5-2) some plots of n, versus R = rou/c are given

for fixed values of X and Y. These curves show how the propagation

~ constant np changes with the guide radius for various values of (,

uNZ and Wy In general the loei of np become approximately parallel
horizontal lines as the guide radius increases. However, for 0.8 <
Y <1, the loci become quite irregular.

From these défa one can also plot the familier k-g diagram
&r similarly g vs np for fixed values of Wy Wy and o An example
for that is given in Figure (5-3). This diagram shows a set of propaga-
ting modes in a waveguide of radius s with fixed values of the electron

density and the dc magnetic field.

5.2 Marm Plasma Case

In the last section of Chapter III, the characterisitc
equation and its approximate solutions are derived, for plasma filled,
axially magnetized waveguide, including the effect of the pressure. In
this case, similar to the case of the cold plasma model, the real roots
np2 of the characteristic equation can take place only in certain inter-
vals of npz. However, the algebra for the determination of the lower
and upper bounds of these intervals involves the solution of polynomial

of sixth degree, the coefficients of which are complicated functions
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Figure (5-2) b) Continued
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of W, X, and Y. Therefore, for this case, only those values of X

and Y which are used in Figure (5-5) are considered. For fixed W, X
and Y, one finds along the real axis of n 2 at most three regions in
which real solutions for nP2 in the charazteristic equation can take
place. Figure (5-4) represents two sets of these regions as a function
of X or Y where X/Y is kept constant for W = 5X10-6 and W = 5X10-4
respectively. For each set of fixed W, X and Y, the first of these
regions has a negative upper bound with very large absolute value

and a lower bound of -®, One can regard them as regions of very high
attenuation., The second is also an attenuating region except that its
upper and lower bounds are finite. The third can be called region of
propagation, although its lower bound is generally negative with very
small absolute vaiue similar to the cold plasma case. This region also
has a finite upper bound. It is again seen that for large X and Y there
can be no real solution for npz in the characteristic equation. As X
and Y decrease one begins to find regions of very high attenuation,
then regions of moderate attenuation and regions of propagation.

Figure (5-5) shows np as a function of R = rou/c for fixed W, W, and Wy
The computed solutions of the characteristic equation are marked with
small circles and dots. As noted in Chapter III, the solutions can be
classified into two categories. Those shown with circles in Figure
(5-5a) through (5-5d) correspond to the so-called ''quasi optical modes"
and plasma modes. A comparison of these figures with Figure (5-3)

reveals that most of these points lie very close to the curves in Figure

(5-3). These points correspond to the quasi optical modes and their
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values are only slightly perturbed by the introduction of compressibility
to the plasma, they are roughly independent of the electron temperature.
The points which correspond to the so-called plasma modes, as already
indicated in Eqs. (3-38) and (3-33.5) lie on a very dense family of
nearly vertical lines. These points, being too densely pakced, are not
shown on these figures (except for a few as shown by dots and which cor-
respond to transitions from plasma to quasi-optical modes®). Instead,

as an example, a small section of Figure (5-5c) is magnified many times as
indicated in Figure‘(S—Se) where the propagation constants of the plasma
modes lie on a family of nearly vertical lines. The sharp bends at the
ends of these lines are resulted from the strong coupling between the

plasma modes and quasi-optical modes.

%*In searching for the zeros of the characteristic equation, as those

shown in Figures (5-5a) through (5-5d), we have divided the abscissa,
namely R, into equally spaced grids. Since the loci of n of the hybrid
modes from a set of nearly vertical lines, their intersecPions with the
constant R grids will give us some of the sclutions for n_. Some of these
are shown in the aforementioned figures. Clearly these pgints, being the
solutions on various loci of n_, should not be connected by a curve. If
the grids along R changed, thePintersections will be changed accordingly.
In other words, these points are but a small part of the solutions for n,
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VI. MODAL WAVES DUE TG A CURRENT SOURCE IN. THE WAVEGUIDE

~In this chapter we consider the field and power carried in
various modes due to a given electric current and particle souce. To
this end we firstiapply Eqs.“(4~1)ﬂand‘(4%2)'to a sectian of the guide
which encloses the sources as shown in‘Figure (6—1): The surface S of
and S, at z = z

1 2 1°

and z, and the guide wall. For simplicity we again assume that the

this section is composed of two transverse planes S

’ ]
static magnetic field is parallel to z , namely the guide axis, After

invoking the boundary conditions one obtains:
ff_[{[gq X T N /N ) TEBHES X H-T (NE/NO)T 1348
S
1

+H{[Eq XHET (N /N T
s

2

-h-.[g; X i“,'Te(”ﬁ/No)qu}-di = U(q,n) (6-1.1)

where
U(q,npn) = IH[' ;’_q 'Ne;;‘eXP(y;;z)— ﬁd'ggexp(y;fZ)
v

- eTen;rexp(,,7-<nz)j.m%+(1/e)i;"rexp(y;kz),iq]dv. - (6~1.2)



Figure (6-1) Longitudinal cross section of a ergulde with sources

118



119

With all the sources ''q'' one may associate a potential function

z szk 2 §. 1. (npmzexp( jk npm,e,kzﬂ m?) (6-2)

where ¢ and m denote the mode indices, j = 1,2 for cold plasma and

j =1, 2, 3 for warm plasma. In general, the fields on the two sides
of the current sources ''q", in the guide, are different from each other.
Therefore, to the coefficients kmz a subscript k is added so that k =1

for z gz, and k = 2 for z >z

1 2’

Let us consider the matrix (Mj) which is defined in Egs.
(3-5.2) and (3-23.5) for cold and warm plasmas respectively. In these
matrices the first two elements of the third row and the first two
elements of the third column are zero. Let us define submatrices (Mbt)

which are made of the first two rows and the first two columns of the

matrices (Mj)' Let the transverse field components on Sl be EQlt’

Enlt and qut’ Hnlt and the longitudinal convection current components

be 1 and I N

and the perturbed electron densities be qu, Nl

qlz nlz

Similarly let all these quantities on S, be denoted in the same manner

2
except that the subscript 1 is replaced by 2. Now let the operator v,

be defined as
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Then, for the quantities with subscribe g, one can write the

following expressions:

=-j M.+ §.9.1.
Eake = 7k zkmzk "pmgk z Mt = 8;9em; ("pmzk)
m» 4 j z=0

=0

i n

exP(-Jkonpmszk+qu9]

(6-3.1)

Hake = N ko/(wo)]z Mo gk z [Kip © 859, (npmzk)exp(-J konmeka‘f:rmcp)J
m, 4 J z=0
o= 0 (6-3.2)
= - - +j -
Loe = 714690 ) Amgipmakc 2433657 ("omgd &P Koo i) (6-3-9)
m, 4 j 2 =0
¢=0
_ . 2 -
Nk = i legky™/e) }:)‘mzszjsj”J (Mo &P (kg g2 i me) (6-3.4)
m, 4, j z=0
v =0
where
= - -3.5
%7 "G e ks (639
In the above expressions if n mg is real one has
<0 for k = 1 (6-3.6.1)
A/ AN
pmk >0 for k = 2, (6-3.6.2)
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whereas for purely imaginar
where p ¥ ginary npmz
<9 for k = 1 (6-3.7.1)
anmzk

>0 for k = 2, (6-3.7.2)

Let the field with subscript n be one of the modes obtained

earlier having the following quantities:

pn pvu
Ent = “3%Mouu zgjt 0859 (ngyJexp (ikong 24 ve) (6-3.8)
j . z2=20
=0
ﬂnt = J[ko/(w"l'o)] E:iﬁt ’ ijtnj(npvu)exP(-JkoanuZ+jvq9 (6-3.9)
j z =20
©=0
Inz - -Jkounonpvu E:v33j6Jnj(nPVU)exP(-JkOnPVUZ+UVq9 (6-3.10)
j z=0
o=0
- 2 s : -
Ny = <ilegky /@) ) Rygmiln Jexp(-kon 2+ ve) (6-3.11)
j z =0
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Inserting the expressions given by Eqs (6-3) into Eq. (6-1)
one finds:
2 . = .
_U‘{-[k /(wo)][meu pmal ZNJt 8,9, (m pmu)exp( jk(‘)ﬂpmﬂzl:‘*_jm(\o)]
m, 4 =0
l o = o

X [2&* - 8% n2<(npvu)exp(J KoMvuZ1™ vo) ]
j =0
=0

2./ (eN o 1C z Mgl Z R;6;m, (npmzl)exp(-j konpmuzlﬂ‘jmcp)]

m, 4 =0
cp=°

[Teo o

pvu}i 33J5Jﬂj( pvu)exP(Jkon;vuzlvam)]
z =0
o =0

2 " e pe e
-[ko «E“o)]npvutjzzbtéjvtﬂu(npvu)exP(Jk npvu 1 va)]
“j z=0
p=0

X [2'>‘m£1 zfilt 1859 (npmgr) P ik 121 ime) ]

z 0
(0] 0
[Teko o u/(eN )][ E:R 5‘ A ) xp (jk np W21 JVqQ]

e
p
z 0
@ 0
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. [zkmzlnpmzl zV33J6 Uy (n !, )exp( -jk np 4l 1+Jm(p)]} ,di
m, 4, _j =0
=0
+“‘{'[k 2/( )][Z)\ n ZM *8.9.1. (n Yexp (- kn +jme) ]
o W/ IL /) Amg2"pmg2 /it 05V Mpmg2 = koMpmg2Z2time
Sz m, 4 J z=0
=0
ZEJ‘t'GJVt milnJexe (k n 2= jve) ]
z=0
=0
[Teko o u/( N )][y)‘mLZZR_} 8;m; (npmzz)exp(-j konpmuzz-i-jmq;)]
m, 4 z=0
¢=0
- l:anu V§3J 6_]'11]_( pv u)exp (Jk ns 22'3"4’)]
j z=0
¢=0
-k, /(uuo)] Evu Zut‘ 6J‘Vt'nj pvu)ex‘o( JRon% % -jve)]
i z=0
p=0
X [Zx,m ¢80 (N o)exp (-3 n e time) ]
m, 4 z=0
=0
-tTeko 20/ (&N )3{21%“5‘"* o ve) P (T, 207 v ]
z=0
=0
n (-
o[z}\mzznpmlz Zv33j5JTTJ (npmzz)e‘(" ~jk anLZ ,+Jm(p)]} .di
M j z2=20
=0
= 14
U(qm.pvu) \6—4‘1)
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where

U(q,npw) = ”‘[{-J (j konpvu)ﬁfj" : 6}'Vn35(n )

bV xp(jk _n*  z=jve)
j z
¢

e
o pvu

0

0

(Jkon;vuz-qug

+ kg (au) DRE - tomtng Jex

J

-eT [d, £1( ek, 2/e) R ming g ) exp (ko ns 2= jve)

J p4

+I (1/7e) (jk_we_n )2 V5’~'3j631‘n35f(npvu)exp(Jk n¥

oo pvu z-jv¢3dv

pvu

¢ = :
(6-4.2)

Let us first try to determine the magnitudes A of pro=

mek

pagating modes, namely those for which npmzis real. To this end we

first fix the subscripts "uv'" such as that we have
(a) Movu = Real.
Under this condition we consider the following two cases:

which indicates @ mode carrying energy in the +z direction. With this

stipulation, Eq. (6~4) implies that

Nae?

J.J.{-[ko/(‘-w‘o):l )\/uznpvutzgjjt ) 6jvt"j (npvu)] X'EXS\} ) 6“Vtﬂ (n pvu
s J J

z
®

o
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L e. ‘o “f& )]xvuz[z_;%“) Qﬂpvu)] pvutzv%hj &*""(npvu)]

z=0" z=0

=0 ¢ =0

- k / “' : '. .f v ‘f"\“ R . -' . | . .

[k / (u ) ]npvu[z M S in 0 x4 ) Kig 8;%m (0 )]
z=0" s z=0
p = 0 ©® = 0

[Tekot uﬂewt},’ww e Punepva D357 () 13045

z2=0 J. z=0.
0 . (p':o

©®

= U(q, n, )/(n )b

pvu o

or -[2ko/(wp,o) N0 ‘”‘Re{[iadt "8V (n )

pvu’ ]
J z=0
© 0

nn

[szlj:tsjifvtﬁj':(npvu) 1] df,
J

-[ZTekoso “w/(ENo) hvuZ j_fRe{[ RJ 6_]“_]( pvu):|
s j z=0
=10

Q1580 1) -3

= U(q, npvu)/(n k)

pvu o
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ﬁﬁ' = Real
pvu
duw/An s 0 - (6-5.1)
(a2)
dw/d
Wonpvu < 0

which indicates a mode carrying energy in the -z direction. For this

case, Eq. (6-4) assumes the form

[Zko/(upb)]Xvulije{tEEJt . 6jvtﬂj(npvu)] X tE:Ejté?vtnj(npvq)]}'éi
S - -

J z=0 J
o =0

2 v e st

+[:ZTekoeo “/(eNo)Jxvul IRE{CZ Rjéjnﬁ(npvu)]'qz V§3j6fﬂf(npvu)]}ds
s j z=0 j z=0 "
o= 0 Q= 0

= Ulq, npvu)/(npvuko)

n = Real

pvu ,

Bw/anpvu < 0. (6-5.2)

Secondly we consider those modes such that npuv will be purely
imaginary.

(b1) If jn .= >0,




then for the mode which has axial refractive index npef

"pef = ""pvu

one gets

2K/ (u) Mgy ”Re{[ZM © gm0
j

€ NT
o

_.J

J

. 2
H2T ke o/ (N ) h g IRe{,[széjn e
s J z

P

SV pef

where U is defined with Eq. (6-4,2),

anef <0

(b2) If ingyy <0

then for the mode which corresponds to npuv

)

1 x
0
0

[?K heg) - 8F(nx ) v m(n

ef 1

now

0
o

©eF(nx )

where

pef)]
z=0
¢ =0

127

such that

o)1) 95

}. ds = U(q,ngef)

.[l/(npe

(6-6.1)

fko)]
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(6-4) yields to

o D[R 2 65 ) T K50 8100 0
S j z=0 _] z=0
p=0 =0

'[ZT k oo “/(eN 1A fZIJRe{EEE 8 ﬂJ( pef ]f; 33J pef l( pef) pef)]} dS
0

S j = z=0
: =0 =0
= U(q, npef)/m k) (6-6.2)
jnpef = Real
jnpef > 0. (6-6.2)

Eqs. (6-5) and (6-6) determine the magnitudes of the fields
of different modes for a given field of sources ' '' inside the waveguide.

These two equations can be combined in one expression as
(A i) 2 W (mek) =y (J, K, £ Fuma) (6-7.1)

where the function wo can be defined by the equation

wO = Re (w1 + wz) (6-7.2)

where

W (mek) = Tk /(au ) 1D

H{[Egt. 859 (npmz) ]X[y :St gmz) 63"“(n§mz)“l( pmz)]
S J J C z
. ® = 0

-8
]
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W (mek) = [T k e 2o/ (N ) I(-1)

)]. ds (6-7.4)

”{[7 "i85mj (npmz)] L V53J Emz”]‘( pmz) ("
s z=0 j z=20
o = P =0
' = % 6"7,5
¢ (LK pLm) = UK R F, ni) /(n k) (6-7.5)
and dS has to be taken as
ds = dslz\. (6-7.6)

~

For a waveguide which is short circuited at one end, say at z = 0,

similar expressions as Eq. (6-7) can be derived defining a field Fn1
instead of the field Fn which we have been using, by assuming the z

dependence to be -2j Sln(konpvuz) where

npvu Emz'

In this case, the left hand side of Eq. (6~7.1) remains
unchanged, whereas on the right hand side of Eq. (6~7.1).and hence on

the right hand side of Eq. (6-7.5), the factor ''[exp(- -jkgn z)]" has to be

pm4
. Hr_oic: o Sl
replaced with the factor '[ 2JS|n(konpm£z)] .
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The power flowing through the waveguide is given by
P+ jQ= (1/2) ”[E x Wi T (NN )E¥]. ds. (6-8)
Inserting the expanded expression
= Z A'ml, Fmﬁ,
m, 4
where F can be E, H, N or 1 and (mg) represents mode index, one gets
P+ 2 ] 5T N /N )IE ] ds.
ja = ( [? Mg Mg Bt Te REC AR
s mg Pq
Using the orthogonality relations (4-13), Eq. (6-9) can be
reduced to
. 200, ,
+ = - e -
P+ jQ= (1/2) lemzl H[Emz X HE Te(NmﬁNo)lmz]. ds (6-10)

m, 4

which is valid only for the waveguide with its axis parallel to the dc
magnetic field. This result shows that if the waveguide modes did not
have the orthogonality property which we made use of, the total power
flow could not be the sum of the power flow for each mode.

The real part P of the Eq. (6-10) is due to all the propagat-
ing modes, i.e. with real np and the imaginary part Q is due to all the

attenuating modes, i.e. modes with imaginary np.




131
With Eq. (6-7.1) it is indicated that
JJanL o - Te(Nmz/No)I* ]. dS.= k "pmz(w1+w2)
Hence .one can rewrite Eq. (6-10) as
. 2
P+ Q= (1/ + -
Q= (72) Y a1 ko ), (6-11)
m, 4
or
. ‘ 2 , 2
“+ = " ; -
P+ja=(1/2) ) 1y ma)lPn  ayau) 2w )% (6-12)
m, 4
let I, be the input current to a probe in the guide, then

inpu t
its input impedance is given by

N

|2

+ i X = [1/]]
R+ jX [I/llinput ]

Y Letma) Pign,  nw,) 7l 2 (mas) | 2.
m, 4

3L

k
(6-13)

The expression for Wi can be given as

= D2/ () 3k e, (= 1,2) (6-14.1)

where Gl and 62 are dimensionless as given in the following form

k r
oo

[ X (i = 1,2) (6-14.2)
p=10
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For the cold plasma case,

3 - (LZ‘)ZJmZ(n Kk r)

t2 o0 o0

2.2
1
+ (Ll) Jm (ntlko

111!
+L1L2Jm(ntlkoro)Jm(n

r.)

o

t2 00

'

Gy N CRY SN CHN SRR LT 25
2 2 4 251)5!

[, |ny| + (Ll+np s1)s!

, 2
- ! !
J K (Lj*an “s])]

2

Jm_'_lz(ntlf)[npz\ny‘2+(Li+np25i)Si] )

tfntl

‘ \

2nl (0/9) 9,2 (0, )= 90 (0 )9 (0P ]

2 2 e 2ey e
[, ley\ + (L2+np s1)s}

. 2
i,y (L£+2np $3)1]

2 20 |2 2
{Fre2 It (P [ °lK | Pl sYsl

ko" )g[(Zm/f)Jm(ntlf)Jm(ntZP)-ntlJml(ntlf)Jm(nth)\

N9 (e (0 1)

- 2 2_ 1 2 1 - ] 2 1 ] -
< [-2n, leyl (Li#n “51)S,m (Lytny s3)s}

2 : .
+S!1 )~ 14 ! W
+an ny(Sl SZ) J(L1 np Sl)ny

2
-1 14 1 ki
J(L2 n SZ)K
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LI (M%) I eakoTo) Permegdmr (Mg My (e )
- 2 k 2_ | 2 ] §
[ ZnP |ny‘ (Ll-tnp 51)52
- (Ly+n 2s1)s1 7
2 'p T2°71
(6-15)
where
= k.r
2 .
Si,l - 51,2/ko [51’2 defined by Eq, (3-3)]
2 .
Li’z = Ll,Z/ko (L), defined by Eq,:(3-4)].
X =
Let the current distribution J (r,¢,2z) be given as
2=l i e 2 (6-16.1)
Then, it can be shown that the expression for ¢ will be found ih the
form of
_, 6
¥ = kg IinputF(npmz) (6-16.2)

where F is some dimensibnless function of the sources.
Inserting Eqs. (6-14) and (6-16) into Eq, (6-13) one obtains
2

R+ jX = [1/|1input|2]2 Z (-1)%(1/8m) (“'o/eo)l/z'npmz(Gl-'-GZ)
k=1 m, g :

{l F(npm£)| 2/[Re(G1+G2) ]2}.
(6-17)
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As a specific example, If the current distribution J (r,¢,z)

in the waveguide is given as

J = 1) 8(9/ (20 )1

one finds that

0 form#0

¢(Js mp)

4L 0,0 = ko 5[y 7"" i )% ()

“( %) xp(jkonpozz)l(z)

ol e
r =0
=0
z=0

For the cold plasma filled waveguide, assuming

koro = 3
Ifnputcos(konpz) for konpz_s n/2
1(z)=
for konpz_z /2
X = .2
Y = .2

.dz

(6-18.1)

(6-18.2)

(6-19.1)

(6-19.2)

(6-19.3)

(6-19.4)

and assuming that the waveguide is short circuited at z = 0, the real

part R of the input impedance is found to be

R = 21.3 (g /e )1/2

(6—19?5)
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However, the waveguide has infinite number of attenuating
modes, therefore, the computation of the reactance X requires the

summation of an infinite series.
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VII. ANISOTROPIC COLD PLASMA FILLED
WAVEGUIDES WITH THE dc MAGNETIC FIELD OBLIQUE TO THE GUIDE AXIS

Let the guide axis z. make an angle ¢ with the dc magnetic
field Eo which is parallel to z axis. Without the loss of generality
one may assume that Eo lies in the x(zj plane and cbnsider that the
field insideithe waveguide is composed of plane waves of which the
propagation constants are represented by points on the refractive index
surfaces [Figure (7-1)].

With respect to the principal coordinate system the direction
cosines of Eo will be Sing, o0, and Cosqy.

If we fix the azimuthal and axial coordinates of a propagation
vector n as ¢ and np according to the coordinate axes xJ, y', zl, then
the radial component n. of this vector can be determined as a multi-

valued function of np and §. The direction cosines of n are then

n_ Cosd/n, aninQ/n and np/n where nr2 + n 2 . n2.

P
Forming the scalar product of B and n one can find the angle B

between B and n as follows:
~0

~

2, 2 2
(nr +np ) Cos®B

]

(anOSQSina + anosa)Z. (7-1)

The dispérsion relation between n, and np can now be given

1
below as a function of the medium parameters Ko’ K+, K, K and Kl’

all of which can be expressed in terms of X, Y and Z:
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<]

Figure (7-1) One of the index surfaces of the zoid plasma where the dc magnetic
field makes ar angle 5 with the gulde axis Z*,
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2 2 2 2 2
Ko(nr +np - +)(nr +np -K_)Cos“g

o2, 2 2, 2 2.\ _
+K(n n, -K ) (n n, -K;) (1-Cos“a) =0 (7-2)

where

K = 1-xX/(1-jz)

X
It

1-X/ (14Y-jZ)
K = 1-X/(1-Y-j2)

K, = 2/[(1/K) + (1/K )]

K = l-X(l-jZ)/[(l-jZ)z-YZ]

Solving Coszs from Eq. (7-1) and inserting it into Eq. (7-2)
one aobtains
2
Ko(nr +n

2 2, 2 . 2
a -K+)(nr g -K_)(anos§S|na+anosa)

Vo2 2 2, 2 2, 2 : 2. _
+ K (nr +np Ko)(nr +np --Kl)[nr +np -(anOSQSIna+anosa) ]=0

which is an algebraic equation of six degrees in .- Thus n is a six
valued function of np and §. For the uniaxial case this value reduces
to four. With a reasoning analogus to that considered in Chapter III,
Section 3, one can consider that the field inside the waveguide is com-
posed of plane waves with transverse propagation vectors falling into

intervals of angle § < §1< $ + d§ where the magnitude of the wave can
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be expressed in a Fourier series in terms of § because of the periodicity

in § with a period of 2q; i.e.,

[~

AO(QI) = 2 A, exp(ime). (7-4)

m=-m
Therefore, one can consider Figure (7-2) which is similar
to Figure (3-1) and find the field at a point P(r, ¢, zl) in the

following form:
dE_ (n ,m., 8 r z”=A exp(jm %jerz”
'V p’1? , m o 1 op '

exp[jkonrl(np,é)rSine]. (7-5)

Again inserting

d=¢- 08+ n/2 (7-6)

one gets for E , (n_,m,/r,¢)
z

. . LI
E (ml) =A o exp(Jml¢eronpz +Jm1ﬂ/2).

21
I eXp[jkontl(np,w,e)rSine—mle]de. (7-7)

8=0
To determine the other components of E one can again write

~

]

dEr(ml) SingdE - CosedE (7-8.1)

1 Y1

dEw(ml) (ccse)dEx + (Sine)dEy (7-8.2)

1 1
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P(r,{y,z")

tt

Figure (7-2) Contribution of a plane wave of transverse propagation index Nl

to the field at a point P(r, o, 2')
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In these expressions, Ex R Ey ,» and EZ are related to E 12

1 1 1 X
E 0 and E ) through the following equations:
y 2!
— — _ —
Exl Cosd Sind 0 r} ;
}
X
E =|-Sind Cos§ 0 E _ (7-9)
Yl Y'
E 0 0 1 E
z, -
S I o N
and — - - — — -
E i Cosy 0 Siny Ex
X
E.l=| o 1 0 E (7-10)
t y
Y
=Siny 0 Cosw E
E z
| Z_j - — R

By making use of Eq. (7-10) together with £qs. (2-17.8) and

(2-17.9) one obtains

Exl = [Cosq(C,/C4) + Sing]E,
Ezi = [-Sina(cl/cs) + COSa]EZ
or
E = [(C)Cosa + €;5ing)/(-C Singy + C4Cosa) ]E (7-10.1)
X z!
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and simi'larly
E, = [0,/ (~C Sina + € Cosa) JE,,, - (7-10.2)
y,
inserting Eqs. (7-10) into Eq. (7-9) one obtains
Exl = {[(cIcOsa+CSSina)cOs¢+c25in¢]/(4c153nd+c3cOsa)}EZ, (7-11.1)
Eyl =-{[-(CICosd+Casina)Sin§+C2CosQ]/(-CISinq+03005a)}Ez, (7-11.2)

C,» C, and Cy are now to be determined from Eqs. (2-18.1),
(2-18,8) and (2-18.8) by inserting the following equivalent expressions

for the operators:

d = -jkon (7-12.1)
X 0 x ,
d = -jkon (7-12.2)
Y oy
d = -jkn (7-12.3)
z oz
where

_ :nx Cosy 0 -Sing | nx|
n = 0 1 0 n .,
Y y

I n_ Siny 0 Cosa n

AT I 4 [l
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and

N =n_ Cosy = -anin(¢r9)

e =N, Sing = anos(¢re)

Ny = np .

These relations lead to the following

n, = -anosa$in(qr9)-npSinq (7-13.1)

ny == anQs(cp-a) | (7"13.2)
n, = -anindSin(qre)+anOSa;:':"3 E .[V N - (7'13'3)

After having found the expressions for Er and E¢, one can
apply the boundary conditions as given by Eqs. (3-8) and find the character-
istic equation for the waveguide. However, Eq. (7-3), being a polynomial
of sixth degree in n. one cannot derive an explicit expression for n..

If dc magnetic field is infinitely strong, then K, K_, K',
and Kl all become equal to 1, and, therefore, the equétion reduces to

a polynomial of fourth degree

2 2 . 2
Ko(nr +np -1)(anos§S|nd+anosa)

0 (7-14)

2 2 .2 2 . 2
+ (nr +np -Ko)[nr +np -(anosQS|nd+anosa) ]
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from which one can derive an explicit expression of n. in terms of np

and &.

Moreover, since in Eq. (7-7) n_ is a function of ¢, E |(m1)
z

1

is not represented by a single Fourier component in . One can find

the Fourier series expansion of the total axial component of E by

first summing up E l's for possible ml‘s and then finding the Fourier
z

component, say the g'th, by multiplying the summation by _j and
e d(p

integrating over ¢. This introduces an infinite set of terms into the

expressions of the field components and hence into the boundary conditions.

One can only say that, in case the dc magnetic field is not parallel
to the waveguide axis one can no longer have simple modes such as the

ones one has when the dc magnetic field is parallel to the wave axis.
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VIII. CONCLUSIONS

Waves in a linearized homogeneous plasma of unbounded region
are investigated. In order to evaluate the effects of electron tempera-
ture and resonance on the wave propagation, three plasma models in in-
creasing complexity are considered: the incompressible (or khe cold)
plasma, the compressible (or the warm) plasma, and the microscopic
model, The first model is the usual one by treating the plasma as a
dielectric; the second is based on the transport equation; and the
third is based on the Boltzmann equation with assumed collision integral
and velocity distribution at equilibrium,

It is found that the compressibility of the plasma introduces
some modifications to tHe refractive index surfaces.b First there exist
three surfaces instead of two as in the cold plasma model. The smallest
surface differs little from that of tHe cold plasma, only by a quantity
dependent on the fourth power of the ratio of the acoustic speed to the
light speed in free space. Parts of the other two surfaces correspond
to the second surface of the cold plasma since they degenerate into the
latter as the electron temperature approaches zero. Now it is found
that the surface can extend to infinity only when YZ > 1, in contrast
ta the cold plasma case. In fact for this case the asymptotes are at
angles (measured from the magnetizing field) larger than those of the
cold plasma model. In the neighborhood of longitudinal direction the
refractive index of the third surface is real and nearly equal to that

of the cold plasma. 1In the neighborhood of transverse direction the
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refractive index of the second surface is purely imaginary and nearly
equal to that of the cold plasma in the same region.

The effect of the electron velocity distribution on the re-
fractive indiées is analyzed, based on the aforementioned Boltzmann
equation approach. Because of the complexity, only the propagation
in two interesting angular regions, namely along and transverse to the
static magnetizing field are considered. It is found that for propaga-
tion in the general longitudinal direction the refractive index cannot
be a large real number in contrast to the results of the warm plasma
model near gyroresonance. Furthermore it is found that from the
Boltzmann equation approach the refractive index in the transverse
direction becomes infinity at Y = 1/p, p = an integer.

Waves in a circular waveguide filled with either cold or warm
magnetoplasma are studied. When the magnetizing field is parallel to
the guide axis the modal waves can be expressed in terms of known
functions, using the boundary condition that on the guide wall the
tangential electric field vanishes, and for the warh plasma the normal
electron velocity also vanishes: .The’chafaﬁferistiC'eédatiohé for both
plasma models are numerically eva1Q5tea and compared.‘ It is found that
the longitudinal propagation constants of the warm plasma model consists
of two types. The first type can be identified as those of the cold
plasma but slightly perturbed by a quantity dependent on the ratio of
the acoustic to the light speeds in free space. However, some field
components associated with these modes (Ep, Hq) differ substantially

for the two plasma models. Modes of the other type aris2s from the
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compressibility of the plasma and the additional boundary condition on
the normal electron velocity. The longitudinal propagation constant
of the second type change rapidly with the guide radius in wavelength
and are so densely located in the Brillouin diagram that they resemble
a continuous spectrum,

For a given source inside the waveguide orthogonality rela-
tions between the model solutions are used to determine the relative
power distributed among various modes. Hence, the real part of the
impedance of an antenna placed in the guide can be computed. However,
as stated above, in general, the fields for the cold and the warm plasma
models differ even if they belong to the modes of nearly equal pro-
pagation constants. Moreover, the warm plasma model brings forth
additional modes. Therefore, it is expected that the antenna impedance
will be different for these two models.

The study of an anisotropic guide with an oblique magnetizing
field shows that the modal solutions cannot be expressed in terms of
known functions, but solutions in terms of series expansions of ele-
mentary functions may be used. However, even for uniaxial cold plasma,

the expressions become very involved.
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APPENDIX 1

ENERGY RELATIONS AND RESTRICTIONS ON THE MATRIX (K)

In part I we have considered three plasma models: the cold
plasma, the warm plasma based upon the transport theory or the fluid
model, and the warm plasma based upon Boltzmann theory. The discussion
of all these three models can begin with the assumption of a one particle
distribution function f for every species of the ions of the plasma,
which, in the most general case can be a function of the velocity and
position of the particle and time. For the cold plasma case, however,

f reduces to a § function of the velocity vector as long as the medium
is not perturbed.

For the distribution function f the Boltzmann equation should

be satisifed
3

3
df +Zv<idxif +z (F./m) d;;rif = (3f/3t)
i=1 i=1

collisions (A1-1)

where vi is the ith component of the position vector v of the particle,*
X, is the ith component of the position vector r of the particle,

Fi is the ith component of the force acting on the particle,
m is the mass of the particle,

€3f/at)

collisions 'S the collision |ntegra1..

*In this. appendix,the. letter v is used for the.veélocity of indiyvidual ions.
However, in the main text the™letter v is used for the fluid model warm
plasma to represent the average velocity of ions as it will be defined:

by Eq. (Al-2.3)
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Multiplying both sides af Eq. (Al-1) with a function of v,
which for example can be expreésed as Q(v) and integrating over the
whole v space one can derive the following equation:(z)
3 3
d, (NQ) +z d (qu) - ) NFid, 0 Q
i=] i=1
o0
= J(af/at)colle;‘ (A1-2.1)
©0
=}
where* N= | fdv (A1-2.2)
©0 00
Ny(v) = J_wﬁy(v)dvk (A1-2.3)

This equation is obtained with the assumptions t'hat.Fi is

not**a finction of v, and as v approaches to infinity f (v) approaches

. to zero with a sufficient aorder of v such that

Id (FF.Q)dv =

-0

By first takfﬁg Q=1 and second Q = v one ‘gets the first and
the second Beltzmann transport equations which are alse called the first
and second moment eqﬂétions.

dN. +g9 (Nv,) =0 {Al-3
N ) (A1-3)

*in the ‘main text,. for fIU|d model warm plasma, for conyeﬂlence, the
letter V is used for Vv v.

Although in the plasma we consider F F(v) still Fi #'Fi(y)! because

 ] we have

£omoelyxgy).
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and 3
d (¥ ) + 2 dxi (N;m )
i=1 3 400
N z Fx, = I (3F/3t) ¢ pympvdy (A1-4)
-00 )
i=1

The Maxwell equation for the Curl of H will now take the form

- + + . -
v X E O th ZJ 2‘ (A1-5)

where I. =q.NV.

~J qJ J~J
qj is the charge of the j and species of ion and J represent the electric
source current.

The second Maxwell Equation remains unchanged, namely

VXE=-pd H-K (A1-6)

~

where K represents the magnetic source current.

Assume that the applied uniform static magnetic field Eo

is sufficiently strong so that the following linearized relation is valid:

jz Fix, = q, (E’+ v X Eo)'
i

Dot multiplying Eqs. (Al-3), (Al-4), (Al-5) and (Al-6) with

kQTfNj/NO ’h§§@j’ -E and H, respectively and adding the four equations

one finds(z)
. + 1, _“ ='
vIEXH+) ((kiNY)]=
J

i 2 2 — 2 = 2
d [(1/2)y H+(1/2) ¢ +}:(1/2)N0J.mjyvj +Z(1/2) (ek /N DTN
i) J
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«J "E~K- H* ‘ (A1-7)

where Noj is the equilibrium value of N, For a source free medium,

. the last two terms of the right hand side of the above equation drop.*

For a cold plasma, inserting T = 0 one finds the conservation
equation of the electromagnetic waves, which is the expression of the
Poynting theorem. 1In that case the terms E X H, (1/2)“05?; (l/Z)GOE?
and El (1/2)N°jn3132 represent the density of power flow, the stored
magne{ic energy density, the stored electric energy density and the
kinetic energy density gained by the unit volume of the fluid of ions,
respectively. On the other hand, for a medium where there are no
electromagnetic fields, i.e., E‘=,O and E’= 0, Eq. (Al-7) reduces to the

expression of the conservation theorem for acoustic disturbance of the

: L — -2
i . For that the terms TNV ) (1/2) N m
ion gas or that case the terms 4 iV Y j( ) oj™i Y

and Ei (172) (2 k/NOJ.)'I:l.‘.l\lJ.2 would represent the density of energy flow
J

due to the pressure gradient, the kinetic energy density and the thermal

energy density of the compressible fluid, respectively. In the presence

*For a more general case one can add to Eq. (Al-3) a source term which
creates particles and to Eq. (Al-4) a source term which represents
fources applied on the particles other than the electromagnetic forces,
and thus have a modified form of Eq. (Al-7). For the purpose of this
text, however, this is unnecessary.
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of the electromagnetic field, and temperature, the terms on the right
hand side of Eq. (Al-7) would have the same meanings as explained
above. The left hand side, which represents the total energy flow density
can be called the modified or generalized Poynting vector.
In a monochromatic wave, by using the complex notation,

Eq. (Al-7) can be written as follows:

(1/2)9. [E X Hr - 2 (4KT/N N T¥/q, ] =
J

)

(1/2) e . (=jun K

-(1/2) E . (-] Ev‘=+z N
( )~ (Ju)GON ' a; O_j~_j)
j

- (1/2) 2(“”3’”0 PN Gk )

J
+(1/DY N .v*[-jgn.v.+q.E.+q.(v. X B
( /)Z OJX«J[ Jom; 35579 (~J w)]
J
-(1/2)J% - E - (1/2) K *+ H*, (A1-8)

In the right hand side of Eq. (Al-8) the real part of the
second term is the energy lost due to the electric field and current
flow and the real part of the fourth term is the enrgy lost due to the
motion of particles in the presence of a pressure gradient. Accordingly,

the sum of the second and the fourth tems will be the total energy
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loss due to mechanic and electric forces, the terms El° qj Noj ?j*
cancelling each other showing energy transformation from mechanical

form to electrical form or vice versa. Since we assumed that there are
no collisions and hence no energy contribution from the mechanical side
to be consumed as ohmic losses, the second term must be purely imaginary.

In case of a plane wave, where one can use a diadic ¢, then, one must

have

Re(E - (jwi/g)*lao. (A1-9)

From this one finds

E - (-jowe*)E*+E + juwe'E* = O
~ NN ~

o~
~

or

€ - (-jo) (g¢') -E¥s 0.

€
~

This requires

% T
X - ¢ =0
= =

or
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APPENDIX II
THE DERIVATION OF THE MATRIX' (K) ACCORDING TO THE
BOLTZMANN EQUATI®N APPROACH
Let orijl denote the (ij)th element of the matrix (qr')
where i and j canbe 1 or 2 or 3. Using the transformation
¥ = xty (A1-1)
§' = -x+y (A1-2)
form Eqs. (2-54.3) and (2-54.4) one attains that (3
o1 = [ZeZN/(me)](1+Sinzea/36inze)1‘~£ (A1-3.1)
22 : |
Orip =0ppp = -[2e2N/(me)]Sinze(a/ae)l3 (A1-3.2)
= 2 22 2, 2 . 2
G:.m 'a-all'31 = 0’:_23:.= 0‘:.3,2— [Ne /(mw) ][ko n vy /(ZwH )](Sln 9)12]
23 32 . 22 .
(A1-3.3)
glag = 2[e N/(muﬂ)][1+(2np /VT)(B/ahp )11, “ (A1-3.4)
where
L= fpexP{'szf(':j )/ w,)¥1 ] Jexp[-2(v-k n/ )2(x200529+51n2x5in29)]dx
%] IV EMTo Wy RS
2 S
° (A1-4)
| ) 2,20 2. 2 ;2.3
121:'.[06"‘"{'} 2x[ (urJ v}/ @+1/2)2x Jexp -2 (v k n/wy) “ (x“Cos“@+Sin xsin"e) Jux
22 - :

(A1-5)

*In this section Ij is used to indicate the intégrals only.

~
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2 2,2. 2 2 ..2
13 - I exp[-}Zx(urjv)/wH]exp[-2(ka0n/wH) (x“Cos“g+sin“xSin“g) Jdx
0 (A1 -6)
where Vp = (kT/m)l/2 , (AY-7)
Let Vi1 = v + j“ﬂ (A1-8.1)
12
and v%; v+ j(l/Z)uH (A1-8.2)
then one can write
13 = I3 (8, v) (A1-8.3)
1ll = 13 (s, \,1)] (A1-8.4)
12 12
12] = 13 (e, \)2}- (A]'S.S)
22 22
If one stipulates that
|k0262 kT/(mez)‘ > 1 (2-56.1)

13 can be evaluated using the method of the steepest descent at points

where the exponent of the integrand has saddle points in the complex

plane.
If one defines:
f(z) = -(nz/lnlz)(az2 + SSinzz) (A1-9)
2
where o = Cos‘g (A1-10)
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and B = Sinze (A2-11)

the saddle points will be at the zeros of dzf(z) which is

dzf(z) = -(n2/|n‘2)[2az + g Sin2z]. (A2-12)
Let

2z = x; tjy; =z (A2-13)
then Eq. (A2-12) can be written as

ax | + g Sin 3 Cosh y, = 0 (A2-14.1)

ay, * B Cos x; Sinh y, = 0. (A2-14.2)

Equations (A2-14) can be solved using graphical method. From Egs.

(A2-14) one derives
xlﬁamx]= yl/tanh'yI (A2-15.1)
and -(a/gkinhﬁ/yl = l/Cosx1 (A2-15.2)

In Figure (A2-1) the curve corresponding to Eq. (A2-15.1)
is plotted in X1Y1 plane. This curve is not periodic with respect to
xl. The distances between the zeros of the curve and the odd multiples
of (r/2) decrease monofonically as (xl) increases. The curves in
Figure (A2-2) which are periodic with respect to x| represent the plot
of Eq. (A2-15.2). The curves in Figures (A2-1) and (A2-2) all are

symmetric with respect to the xl and y; axes. In Figure (A2-2.b) the




-

-t

157

e o

-t

-2w

-
<+

5
-

-

Figure (A2-1) The plot of xl/tgx1 = v /tohy,
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Figure (A2-23)

The plot of (~3/¢) Shyl/yl - ll(io:ml for p/q > 1.
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Figure (2-2b) The plot of (-p/“)Shyl/Yl - l/Cosxl for p/a < 1.

—— (-B/a) Sh y, /y, = 1/Cos x, B/a<| ———— x, /g x,= Y, /1ghY,
3 | 1 *y' | I |
LN \‘
L _—
A \ |
| i \
T \
o \
] \\
. \
o | \
| Yo |
. |
| \i
] | »
i '2;77 ﬂ 2¢1r a':—,
i\ i ;
!\ | I
\ | |
o\ |
\ [
\i I ‘
o /
. I
\z 3 [
! .



160

value of y, is the solution of the equation

-1
Sinhyio/ylo =(p/a)

and It increases as (B/q) decreases and becomes arbitrarily large as
(p/a) becomes arbitrarily small.

To find the roots of Eq. (A2-12) one should find the inter-
section of the curves plotted on Figures (A2-1) and (A2-2). One of the
intersection points is (0,0). The other ones depend upon the values of
the parameter (B/a). For very small values of (§/q) they are complex
conjugate pairs the abscissa of which are very close to multiples of n
and the ordinate of which are .very large.  As p/o increases the devia-
tions of their abscissa from these odd multiples of n increase and the
absolute values of their ordinates decrease. For f/" = 4,61 which
corresponds to an angle @ = 65°, the first four roots which are closest
to the Yy axis begome two real double roots and as /% still increases
we find four real roots movjng on the real axis. As B/q still increases
the next four complex roots closest to the y, axis become two real
_dpqple roots and further they change to four real roots.and the pro-
cedure continues in that manner. As p/q becomes arbitrarily large all
the complex roots within same finite interval (-x1.+ xl) will become
real roots within the same interval. Therefore, for g = 90° we will
have infinitely many real roots and no complex roots.

For @ =0 or (s/a) = 0 we have only one root at x, = 0,

1

Y, = 0. The contribution of this saddle point to the integral 1, can

3
be calculated as follows:




Let n be written as

|ej§

n=|n

then one has

f{z) = -z%exp (]28)

In the vicinity of
z =0
o

if one writes
z=r er
where r << 1

one has for f(z)

f(z2)

n

or f(z)
Here for

d_{Re[f(2)]} = min
one has to have

- Cos2(y+rp) = -1
or

¢+ & =Pqn
which implies

§ = Pm- 8.

Inserting P = 0 to Eq. (A2-19) one has for 1

I=(n)2exp (- i) /(41 )

- r2exp(j28).

- rz[C052(¢+Q)+j Sin2(¢t+3)].
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(A2-16)

(A2-17)

(A2-18)

(A2-19)

(A2-20)



where

which implies

where

or

that
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t) = 2vT2 koz\n‘z/wHZ (AZ-ZI?

I, = (ﬂ/atl)”2 (A2-22)
2, 22, 2 .

t = 2vT ko M /wy (A2-23)

I, = (fol/zuh/ /8'k°an). (A2-24)

Since Eq. (A2-24) doesn't include y for @ =0°, one can write

1, =1, =1 for § = O: (A2-25)

Insérting the expression found for 1, i2 and I, one has

- .
] 0 0
ar' & (3/n) 0 1 0 (A2-26)
0 0 0
| |

When one increases the angle @ slightly from zero, one finds

infinitely many saddle points as mentioned above. Let dejyo = z_ be

(o]

one of these saddle points. Then one has

2 acin? 2 2 2. 2 2 ....2
-(azo'+BS|n zo) = -a(xb -yo )-s(S|n beh yo—Cos xBS|nh yo)

. 1 . .
J[Zaxoyo+.2 S|n2)<b SlnthO]
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Under the condition we had, namely

Re(n?/[nl?) > 0

one has Re[f(z)] >> 1, although at the point (0,0) we had Re[f(z)] = 0.
Therefore, after having left the fir st saddle point, the path of the
integration must climb over a very high hill of Re[f(z)] in order to
pass through the second saddle point. This climb causes the first
saddle point to loose its significance and the second saddle point
makes the value of 13 arbitrarily large for arbitrarily large values
of t1 which was defined by Eq. (A2-21). However, a look at Figure
(A2-3) shows that, the difference between the integrals 13(9 = 0) and
13(9 = g¢) where ¢ is arbitrarily small should be arbitrarily small and
that for very large values of 4 the main contribution to I3 must still
be due to the saddle point at the origin. Therefore, for very small
values of g the path of the integral must be kept away from the hills
of the other saddle points and kept on the.real axis. For the evalua-

tion of 13 a procedure simjlar to the one we had for g = 0° can be

taken. This time instead of Eq. (A2-16) one has

f(z) = -(a22+55in22)exp(j2é)

Similarly, Eq. (A2-17) changes into

f(z) & -rz(a+s)exp(j2§). Hence for I, one has

I; =/m  w//B knvy/amB ] (A2-27)
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X

Figure (A2-3b) The plot of

2% exp[-tl(qxf+35inzx‘)]wlth >0, >0, p/loy << 1.
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which again is independent of y and hence one again has

I =1, =1, g<< 1. (A2-28)

Using Eqs. (A2-27) and (A2-28) we find the matrix c; as

1-(1/2)sin%g  -(1/2)sin’g -[1/(2/2) Jsin2

(o;) = (s/n) -(1/2)sin2 g 1-(1/2)Sin29 -[1/(2/2) }sin2g

-[1/(2/2) Jsin2e -[1/(2/2)7Sin%a Sin’e

- pa—

(A2-29)

For the case @ = 90° the saddle points on the real axis have

their abscissa as

zp = Pn/2 P=20,1,2,

Corresponding to these points one has
ld_ £l
zz

z=2z =2
P

-
-n%[‘nt%’ for P = 2mt 1

f) = (A2-30)

0 for P = 2m

Eq. (A2-30) shows that the main contribution to the integral

comes from the saddle points at which p is an even integer. In the
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vicinity of the pth saddle point 2502 f(z) will be

f(z) = '("2/‘n|2)[f(20p)+(z-zop?f‘(Zop)+_"']

inserting n = |nlexp(j®)

and -z =T exp (jy)
one finds for the minimum of dr[Ref(z)]

¢ = Pla/2)-3

Summing the contributions of all saddle points over the real

axis one finds

1 = (1/2) (/1) /2 +=§:(n/tfl/zexp['J(urjv)Zmn/uh]

m=1

- ji (n/t)l/zexP[-t+j(n/2)'J(urjv)(2m+l)n/uh]
=0 ’

Assuming very little loss due to collisions which can be
arbitrarily small, one can take
v # 0

in which case-l3 converges to




exp[-j (uj \))——]—exp < -Zk + 5 )
- oL o
3 AE kOnVT{z 7 Sin[(urjv) IH] }

the term including exp(-2k°2n2v.|.2

which f(z) is other than zero and can be neglected since we assume

/sz) is due to the saddle points at

that inequality (2-47) is valid.

Using Eqs. (A2-8.1) and (A2-8.2) one can evaluate I, and I, also.

1 2

Inserting the values found for the elements of the matrix (o;)

one finds
2k 2.2 2 k2n2v 2
_gexp;l_ﬁ.:):'_u)_‘*,j[_g+ o ]efooz.T
ol =gl =253, f oy oy }
rll r22 n (4 2jSi fﬂi;ylﬂ

o! = g! =.2§ {} l +
rl2 r2l n 4 ZJSI.S“;[M)ﬂ

Wy
1 = ol = 1 = 1 =
Or13 = Ora3 = Op3p ~ O3y = O
-k anv 2
exp —-lur 1) © exp —2 2T
ol =—2--§ {..1- + ‘”H kil wH }
r33 n 2 2jsi ﬁwily)ﬁ
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